These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source. Márquez-Reyes JM; López-Chuken UJ; Valdez-González A; Luna-Olvera HA Bioresour Technol; 2013 Sep; 144():128-34. PubMed ID: 23859988 [TBL] [Abstract][Full Text] [Related]
4. Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system. Ahmad WA; Zakaria ZA; Khasim AR; Alias MA; Ismail SM Bioresour Technol; 2010 Jun; 101(12):4371-8. PubMed ID: 20185301 [TBL] [Abstract][Full Text] [Related]
5. Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater. Giménez JB; Carretero L; Gatti MN; Martí N; Borrás L; Ribes J; Seco A Water Sci Technol; 2012; 66(3):494-502. PubMed ID: 22744678 [TBL] [Abstract][Full Text] [Related]
6. Organics, sulfates and ammonia removal from acrylic fiber manufacturing wastewater using a combined Fenton-UASB (2 phase)-SBR system. Li J; Luan Z; Yu L; Ji Z Bioresour Technol; 2011 Nov; 102(22):10319-26. PubMed ID: 21937223 [TBL] [Abstract][Full Text] [Related]
7. Tannery effluent as a carbon source for biological sulphate reduction. Boshoff G; Duncan J; Rose PD Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595 [TBL] [Abstract][Full Text] [Related]
8. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate. Byun IG; Lee TH; Kim YO; Song SK; Park TJ Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428 [TBL] [Abstract][Full Text] [Related]
9. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chang IS; Kim BH Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035 [TBL] [Abstract][Full Text] [Related]
10. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
11. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater. Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic treatment of landfill leachate by sulfate reduction. Henry JG; Prasad D Water Sci Technol; 2000; 41(3):239-46. PubMed ID: 11381997 [TBL] [Abstract][Full Text] [Related]
13. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters. Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212 [TBL] [Abstract][Full Text] [Related]
14. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol. Pagnanelli F; Viggi CC; Cibati A; Uccelletti D; Toro L; Palleschi C J Hazard Mater; 2012 Jan; 199-200():186-92. PubMed ID: 22104763 [TBL] [Abstract][Full Text] [Related]
15. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater. Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306 [TBL] [Abstract][Full Text] [Related]
16. Soil aquifer treatment of artificial wastewater under saturated conditions. Essandoh HM; Tizaoui C; Mohamed MH; Amy G; Brdjanovic D Water Res; 2011 Aug; 45(14):4211-26. PubMed ID: 21700308 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland. Mauricio Gutiérrez A; Peña Cabriales JJ; Maldonado Vega M Int J Phytoremediation; 2010; 12(4):317-34. PubMed ID: 20734910 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies. van Lier JB; Lens PN; Pol LW Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084 [TBL] [Abstract][Full Text] [Related]
19. Removal of Cr (VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance. Wang XS; Chen LF; Li FY; Chen KL; Wan WY; Tang YJ J Hazard Mater; 2010 Mar; 175(1-3):816-22. PubMed ID: 19926221 [TBL] [Abstract][Full Text] [Related]
20. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test. Boni MR; Sbaffoni S J Hazard Mater; 2009 Jul; 166(2-3):1087-95. PubMed ID: 19153005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]