BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 20884204)

  • 21. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological Cr(VI) removal coupled with biomass growth, biomass decay, and multiple substrate limitation.
    Contreras EM; Orozco AM; Zaritzky NE
    Water Res; 2011 May; 45(10):3034-46. PubMed ID: 21511324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass.
    Jain M; Garg VK; Kadirvelu K
    J Hazard Mater; 2009 Nov; 171(1-3):328-34. PubMed ID: 19564074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon.
    Hsu NH; Wang SL; Liao YH; Huang ST; Tzou YM; Huang YM
    J Hazard Mater; 2009 Nov; 171(1-3):1066-70. PubMed ID: 19619940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria.
    Kieu HT; Müller E; Horn H
    Water Res; 2011 Jul; 45(13):3863-70. PubMed ID: 21632086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths.
    Ouejhani A; Hellal F; Dachraoui M; Lallevé G; Fauvarque JF
    J Hazard Mater; 2008 Sep; 157(2-3):423-31. PubMed ID: 18314266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica.
    Bankar AV; Kumar AR; Zinjarde SS
    J Hazard Mater; 2009 Oct; 170(1):487-94. PubMed ID: 19467781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor.
    Gnanapragasam G; Senthilkumar M; Arutchelvan V; Velayutham T; Nagarajan S
    Bioresour Technol; 2011 Jan; 102(2):627-32. PubMed ID: 20800478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficacy of bacterial consortium-AIE2 for contemporaneous Cr(VI) and azo dye bioremediation in batch and continuous bioreactor systems, monitoring steady-state bacterial dynamics using qPCR assays.
    Desai C; Jain K; Patel B; Madamwar D
    Biodegradation; 2009 Nov; 20(6):813-26. PubMed ID: 19517254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment.
    Cetin D; Dönmez S; Dönmez G
    J Environ Manage; 2008 Jul; 88(1):76-82. PubMed ID: 17363134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger.
    Park D; Yun YS; Jo JH; Park JM
    Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of an anaerobic bioreactor with biomass recycling, continuously removing COD and sulphate from industrial wastes.
    Kosińska K; Miśkiewicz T
    Bioresour Technol; 2009 Jan; 100(1):86-90. PubMed ID: 18650086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic-aerobic activated sludge process.
    Chen Y; Gu G
    Bioresour Technol; 2005 Oct; 96(15):1713-21. PubMed ID: 16023575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrocoagulation removal of Cr(VI) from simulated wastewater using response surface methodology.
    Bhatti MS; Reddy AS; Thukral AK
    J Hazard Mater; 2009 Dec; 172(2-3):839-46. PubMed ID: 19695770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems.
    Stasinakis AS; Thomaidis NS; Mamais D; Lekkas TD
    Chemosphere; 2004 Dec; 57(9):1069-77. PubMed ID: 15504465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor.
    Sahinkaya E; Kilic A; Altun M; Komnitsas K; Lens PN
    J Hazard Mater; 2012 Jun; 219-220():253-9. PubMed ID: 22521797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of combining biological treatment and activated carbon on hexavalent chromium reduction.
    Orozco AM; Contreras EM; Zaritzky NE
    Bioresour Technol; 2011 Feb; 102(3):2495-502. PubMed ID: 21123053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Apr; 96(6):1064-72. PubMed ID: 17004272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution.
    Wang Q; Xu X; Zhao F; Liu Z; Xu J
    Water Sci Technol; 2010; 61(11):2889-96. PubMed ID: 20489262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.