These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 20884204)

  • 41. Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC.
    Quintelas C; Fonseca B; Silva B; Figueiredo H; Tavares T
    Bioresour Technol; 2009 Jan; 100(1):220-6. PubMed ID: 18565747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor.
    Wang Q; Feng C; Zhao Y; Hao C
    Bioresour Technol; 2009 Apr; 100(7):2223-7. PubMed ID: 19013791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes' carbons.
    Bansal M; Singh D; Garg VK
    J Hazard Mater; 2009 Nov; 171(1-3):83-92. PubMed ID: 19553015
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature and feed strategy effects on sulfate and organic matter removal in an AnSBB.
    Costabile AL; Canto CS; Ratusznei SM; Rodrigues JA; Zaiat M; Foresti E
    J Environ Manage; 2011 Jul; 92(7):1714-23. PubMed ID: 21371806
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.
    Yetilmezsoy K; Sakar S
    J Hazard Mater; 2008 Mar; 151(2-3):547-58. PubMed ID: 17643817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent.
    Srivastava S; Thakur IS
    Biodegradation; 2007 Oct; 18(5):637-46. PubMed ID: 17203372
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.
    Barrera-Díaz CE; Lugo-Lugo V; Bilyeu B
    J Hazard Mater; 2012 Jul; 223-224():1-12. PubMed ID: 22608208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Phase separation characteristics of an anaerobic baffled reactor treating organic wastewater containing sulphate].
    Jiang YR; Hu MC; Li XJ; Nong YN; Deng XM; Rong CJ; Zhou RM; Wei TY
    Huan Jing Ke Xue; 2010 Jul; 31(7):1544-53. PubMed ID: 20825024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater.
    Sahinkaya E; Gungor M
    Bioresour Technol; 2010 Dec; 101(24):9508-14. PubMed ID: 20724148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass.
    Chen Y; Gu G
    Bioresour Technol; 2005 Oct; 96(15):1722-9. PubMed ID: 16023576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading.
    Molokwane PE; Meli CK; Chirwa EM
    Water Sci Technol; 2008; 58(2):399-405. PubMed ID: 18701792
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The use of micro-algal biomass as a carbon source for biological sulphate reducing systems.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2659-66. PubMed ID: 15207596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment.
    Chen S; Sun D; Chung JS
    J Hazard Mater; 2007 Jun; 144(1-2):577-84. PubMed ID: 17141410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas-solution interface.
    Ke Z; Huang Q; Zhang H; Yu Z
    Environ Sci Technol; 2011 Sep; 45(18):7841-7. PubMed ID: 21809855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial culture dynamics and chromium (VI) removal in packed-column microcosm reactors.
    Molokwane PE; Nkhalambayausi-Chirwa EM
    Water Sci Technol; 2009; 60(2):381-8. PubMed ID: 19633380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study.
    Connaughton S; Collins G; O'Flaherty V
    Water Res; 2006 Jul; 40(13):2503-10. PubMed ID: 16814840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater.
    Singh SK; Bansal A; Jha MK; Dey A
    Bioresour Technol; 2012 Jan; 104():257-65. PubMed ID: 22154744
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of chromium from industrial waste by using eucalyptus bark.
    Sarin V; Pant KK
    Bioresour Technol; 2006 Jan; 97(1):15-20. PubMed ID: 16154498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.