These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20884360)

  • 41. Optimal spatial filtering for brain oscillatory activity using the Relevance Vector Machine.
    Belardinelli P; Jalava A; Gross J; Kujala J; Salmelin R
    Cogn Process; 2013 Nov; 14(4):357-69. PubMed ID: 23729235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localization Estimation Algorithm (LEA): a supervised prior-based approach for solving the EEG/MEG inverse problem.
    Mattout J; Pélégrini-Issac M; Bellio A; Daunizeau J; Benali H
    Inf Process Med Imaging; 2003 Jul; 18():536-47. PubMed ID: 15344486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dipole source localization by means of maximum likelihood estimation I. Theory and simulations.
    Lütkenhöner B
    Electroencephalogr Clin Neurophysiol; 1998 Apr; 106(4):314-21. PubMed ID: 9741759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.
    Strohmeier D; Bekhti Y; Haueisen J; Gramfort A
    IEEE Trans Med Imaging; 2016 Oct; 35(10):2218-2228. PubMed ID: 27093548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents.
    Lucka F; Pursiainen S; Burger M; Wolters CH
    Neuroimage; 2012 Jul; 61(4):1364-82. PubMed ID: 22537599
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving spatial localization in MEG inverse imaging by leveraging intersubject anatomical differences.
    Larson E; Maddox RK; Lee AK
    Front Neurosci; 2014; 8():330. PubMed ID: 25368547
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluations of sparse source imaging and minimum norm estimate methods in both simulation and clinical MEG data.
    Zhu M; Zhang W; Dickens D; Ding L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6744-7. PubMed ID: 23367477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial fidelity of MEG/EEG source estimates: A general evaluation approach.
    Samuelsson JG; Peled N; Mamashli F; Ahveninen J; Hämäläinen MS
    Neuroimage; 2021 Jan; 224():117430. PubMed ID: 33038537
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-subject MEG/EEG source imaging with sparse multi-task regression.
    Janati H; Bazeille T; Thirion B; Cuturi M; Gramfort A
    Neuroimage; 2020 Oct; 220():116847. PubMed ID: 32438046
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data.
    Zumer JM; Attias HT; Sekihara K; Nagarajan SS
    Neuroimage; 2007 Aug; 37(1):102-15. PubMed ID: 17574444
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sparse current source estimation for MEG using loose orientation constraints.
    Chang WT; Ahlfors SP; Lin FH
    Hum Brain Mapp; 2013 Sep; 34(9):2190-201. PubMed ID: 22438263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatiotemporal noise covariance estimation from limited empirical magnetoencephalographic data.
    Jun SC; Plis SM; Ranken DM; Schmidt DM
    Phys Med Biol; 2006 Nov; 51(21):5549-64. PubMed ID: 17047269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-Time MEG Source Localization Using Regional Clustering.
    Dinh C; Strohmeier D; Luessi M; Güllmar D; Baumgarten D; Haueisen J; Hämäläinen MS
    Brain Topogr; 2015 Nov; 28(6):771-84. PubMed ID: 25782980
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Source cancellation profiles of electroencephalography and magnetoencephalography.
    Irimia A; Van Horn JD; Halgren E
    Neuroimage; 2012 Feb; 59(3):2464-74. PubMed ID: 21959078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reducing Sensor Noise in MEG and EEG Recordings Using Oversampled Temporal Projection.
    Larson E; Taulu S
    IEEE Trans Biomed Eng; 2018 May; 65(5):1002-1013. PubMed ID: 28783620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.
    Liao K; Zhu M; Ding L
    Comput Methods Programs Biomed; 2013 Aug; 111(2):376-88. PubMed ID: 23706527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters.
    Hincapié AS; Kujala J; Mattout J; Daligault S; Delpuech C; Mery D; Cosmelli D; Jerbi K
    Comput Intell Neurosci; 2016; 2016():3979547. PubMed ID: 27092179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations.
    Gramfort A; Strohmeier D; Haueisen J; Hämäläinen MS; Kowalski M
    Neuroimage; 2013 Apr; 70():410-22. PubMed ID: 23291276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bayesian model averaging in EEG/MEG imaging.
    Trujillo-Barreto NJ; Aubert-Vázquez E; Valdés-Sosa PA
    Neuroimage; 2004 Apr; 21(4):1300-19. PubMed ID: 15050557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.