These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 20884576)

  • 1. Receptive field asymmetries produce color-dependent direction selectivity in primate lateral geniculate nucleus.
    Tailby C; Dobbie WJ; Solomon SG; Szmajda BA; Hashemi-Nezhad M; Forte JD; Martin PR
    J Vis; 2010 Jul; 10(8):1. PubMed ID: 20884576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial distribution of suppressive signals outside the classical receptive field in lateral geniculate nucleus.
    Webb BS; Tinsley CJ; Vincent CJ; Derrington AM
    J Neurophysiol; 2005 Sep; 94(3):1789-97. PubMed ID: 15888523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission of blue (S) cone signals through the primate lateral geniculate nucleus.
    Tailby C; Szmajda BA; Buzás P; Lee BB; Martin PR
    J Physiol; 2008 Dec; 586(24):5947-67. PubMed ID: 18955378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptive Field Properties of Koniocellular On/Off Neurons in the Lateral Geniculate Nucleus of Marmoset Monkeys.
    Eiber CD; Rahman AS; Pietersen ANJ; Zeater N; Dreher B; Solomon SG; Martin PR
    J Neurosci; 2018 Nov; 38(48):10384-10398. PubMed ID: 30327419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat.
    Nolt MJ; Kumbhani RD; Palmer LA
    J Neurophysiol; 2004 Sep; 92(3):1708-17. PubMed ID: 15128751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary visual cortex neurons that contribute to resolve the aperture problem.
    Guo K; Robertson R; Nevado A; Pulgarin M; Mahmoodi S; Young MP
    Neuroscience; 2006; 138(4):1397-406. PubMed ID: 16446037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two different types of Y cells in the cat lateral geniculate nucleus.
    Yeh CI; Stoelzel CR; Alonso JM
    J Neurophysiol; 2003 Sep; 90(3):1852-64. PubMed ID: 12966179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development.
    Tavazoie SF; Reid RC
    Nat Neurosci; 2000 Jun; 3(6):608-16. PubMed ID: 10816318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study.
    Yousif N; Denham M
    Biol Cybern; 2007 Oct; 97(4):269-77. PubMed ID: 17657507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatic summation and receptive field properties of blue-on and blue-off cells in marmoset lateral geniculate nucleus.
    Eiber CD; Pietersen ANJ; Zeater N; Solomon SG; Martin PR
    Vision Res; 2018 Oct; 151():41-52. PubMed ID: 29129732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of the difference-of-Gaussians model to circular drifting-grating patches.
    Einevoll GT; Plesser HE
    Vis Neurosci; 2005; 22(4):437-46. PubMed ID: 16212701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus).
    Lui LL; Bourne JA; Rosa MG
    Eur J Neurosci; 2007 Mar; 25(6):1780-92. PubMed ID: 17432965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey.
    Tinsley CJ; Webb BS; Barraclough NE; Vincent CJ; Parker A; Derrington AM
    J Neurophysiol; 2003 Aug; 90(2):930-7. PubMed ID: 12711710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat.
    Soodak RE; Shapley RM; Kaplan E
    J Neurophysiol; 1987 Aug; 58(2):267-75. PubMed ID: 3655866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fidelity of the ensemble code for visual motion in primate retina.
    Frechette ES; Sher A; Grivich MI; Petrusca D; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2005 Jul; 94(1):119-35. PubMed ID: 15625091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus.
    Grubb MS; Thompson ID
    J Neurophysiol; 2003 Dec; 90(6):3594-607. PubMed ID: 12944530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus.
    Reid RC; Shapley RM
    Nature; 1992 Apr; 356(6371):716-8. PubMed ID: 1570016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mosaic properties of midget and parasol ganglion cells in the marmoset retina.
    Szmajda BA; Grünert U; Martin PR
    Vis Neurosci; 2005; 22(4):395-404. PubMed ID: 16212698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Organization of the receptor inputs of the receptive fields of the retinal ganglion cells in the frog].
    Funtikov BA; Koreshev AIa
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jun; 69(6):789-94. PubMed ID: 6873390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.