These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20884691)

  • 21. Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection.
    Staib P; Kretschmar M; Nichterlein T; Hof H; Morschhäuser J
    Infect Immun; 2002 Feb; 70(2):921-7. PubMed ID: 11796627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-regulation of Candida albicans population size during GI colonization.
    White SJ; Rosenbach A; Lephart P; Nguyen D; Benjamin A; Tzipori S; Whiteway M; Mecsas J; Kumamoto CA
    PLoS Pathog; 2007 Dec; 3(12):e184. PubMed ID: 18069889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae.
    Coste AT; Ramsdale M; Ischer F; Sanglard D
    Microbiology (Reading); 2008 May; 154(Pt 5):1491-1501. PubMed ID: 18451058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast.
    Bohner A; Kojima S; Hajirezaei M; Melzer M; von Wirén N
    Plant J; 2015 Feb; 81(3):377-87. PubMed ID: 25440717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.
    Wu D; Li X; Lu J; Chen J; Zhang L; Xie G
    FEMS Microbiol Lett; 2016 Jan; 363(1):fnv214. PubMed ID: 26538578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans.
    Schweizer A; Rupp S; Taylor BN; Röllinghoff M; Schröppel K
    Mol Microbiol; 2000 Nov; 38(3):435-45. PubMed ID: 11069668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays.
    Zanin L; Tomasi N; Wirdnam C; Meier S; Komarova NY; Mimmo T; Cesco S; Rentsch D; Pinton R
    BMC Plant Biol; 2014 Aug; 14():222. PubMed ID: 25168432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dur3 and nrt2 genes in the bloom-forming dinoflagellate Prorocentrum minimum: Transcriptional responses to available nitrogen sources.
    Pechkovskaya SA; Knyazev NA; Matantseva OV; Emelyanov AK; Telesh IV; Skarlato SO; Filatova NA
    Chemosphere; 2020 Feb; 241():125083. PubMed ID: 31683425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced virulence of Candida albicans mutants affected in multidrug resistance.
    Becker JM; Henry LK; Jiang W; Koltin Y
    Infect Immun; 1995 Nov; 63(11):4515-8. PubMed ID: 7591094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional analysis of a vacuolar ABC transporter in wild-type Candida albicans reveals its involvement in virulence.
    Theiss S; Kretschmar M; Nichterlein T; Hof H; Agabian N; Hacker J; Köhler GA
    Mol Microbiol; 2002 Feb; 43(3):571-84. PubMed ID: 11929516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-affinity iron permease essential for Candida albicans virulence.
    Ramanan N; Wang Y
    Science; 2000 May; 288(5468):1062-4. PubMed ID: 10807578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gln3 is a main regulator of nitrogen assimilation in Candida glabrata.
    Pérez-Delos Santos FJ; Riego-Ruiz L
    Microbiology (Reading); 2016 Aug; 162(8):1490-1499. PubMed ID: 27222014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A family of oligopeptide transporters is required for growth of Candida albicans on proteins.
    Reuss O; Morschhäuser J
    Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using
    Schrevens S; Durandau E; Tran VDT; Sanglard D
    Virulence; 2022 Dec; 13(1):1285-1303. PubMed ID: 35795910
    [No Abstract]   [Full Text] [Related]  

  • 35. Avirulence of Candida albicans FAS2 mutants in a mouse model of systemic candidiasis.
    Zhao XJ; McElhaney-Feser GE; Sheridan MJ; Broedel SE; Cihlar RL
    Infect Immun; 1997 Feb; 65(2):829-32. PubMed ID: 9009352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans.
    Vieira N; Casal M; Johansson B; MacCallum DM; Brown AJ; Paiva S
    Mol Microbiol; 2010 Mar; 75(6):1337-54. PubMed ID: 19968788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence.
    Kur K; Gabriel I; Morschhäuser J; Barchiesi F; Spreghini E; Milewski S
    Mycopathologia; 2010 Dec; 170(6):397-402. PubMed ID: 20571912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional characterization and virulence study of ADE8 and GUA1 genes involved in the de novo purine biosynthesis in Candida albicans.
    Jiang L; Zhao J; Guo R; Li J; Yu L; Xu D
    FEMS Yeast Res; 2010 Mar; 10(2):199-208. PubMed ID: 20082641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection.
    Chen YL; Kauffman S; Reynolds TB
    Infect Immun; 2008 Jun; 76(6):2793-801. PubMed ID: 18268031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.