These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2088495)

  • 61. Structural fluctuations and conformational entropy in proteins: entropy balance in an intramolecular reaction in methemoglobin.
    Steinhoff HJ; Schlitter J; Redhardt A; Husmeier D; Zander N
    Biochim Biophys Acta; 1992 May; 1121(1-2):189-98. PubMed ID: 1599941
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A gradient-directed Monte Carlo approach for protein design.
    Hu X; Hu H; Beratan DN; Yang W
    J Comput Chem; 2010 Aug; 31(11):2164-8. PubMed ID: 20186860
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computation of the dipole moments of proteins.
    Antosiewicz J
    Biophys J; 1995 Oct; 69(4):1344-54. PubMed ID: 8534804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The multiple-minima problem in the conformational analysis of polypeptides. III. An electrostatically driven Monte Carlo method: tests on enkephalin.
    Ripoll DR; Scheraga HA
    J Protein Chem; 1989 Apr; 8(2):263-87. PubMed ID: 2736043
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.
    Inglis S; Melko RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013306. PubMed ID: 23410459
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mesoscopic dynamic Monte Carlo simulations of the adsorption of proteinlike HP chains within laterally constricted spaces.
    Liu SM; Haynes CA
    J Colloid Interface Sci; 2005 Feb; 282(2):283-92. PubMed ID: 15589532
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimal region of average side-chain entropy for fast protein folding.
    Galzitskaya OV; Surin AK; Nakamura H
    Protein Sci; 2000 Mar; 9(3):580-6. PubMed ID: 10752620
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The helix-coil transition revisited.
    Chen Y; Zhou Y; Ding J
    Proteins; 2007 Oct; 69(1):58-68. PubMed ID: 17596846
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Side-chain entropy opposes alpha-helix formation but rationalizes experimentally determined helix-forming propensities.
    Creamer TP; Rose GD
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5937-41. PubMed ID: 1631077
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optimal protocol and trajectory visualization for conformational searches of peptides and proteins.
    Abagyan R; Argos P
    J Mol Biol; 1992 May; 225(2):519-32. PubMed ID: 1593634
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The entropic nature of protein thermal stabilization.
    Khechinashvili NN; Capital Ka Cyrillicabanov AV; Kondratyev MS; Polozov RV
    J Biomol Struct Dyn; 2014; 32(9):1396-405. PubMed ID: 23879480
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space.
    Caflisch A; Niederer P; Anliker M
    Proteins; 1992 Sep; 14(1):102-9. PubMed ID: 1409559
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Conformational entropy in protein folding. A guide to estimating conformational entropy via modeling and computation.
    Creamer TP
    Methods Mol Biol; 2001; 168():117-32. PubMed ID: 11357622
    [No Abstract]   [Full Text] [Related]  

  • 74. Folding simulations of small proteins.
    Kim SY; Lee J; Lee J
    Biophys Chem; 2005 Apr; 115(2-3):195-200. PubMed ID: 15752604
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A simple model of directional interactions for proteins.
    Li X; Gunton JD; Chakrabarti A
    J Chem Phys; 2009 Sep; 131(11):115101. PubMed ID: 19778150
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Empirical evaluation of the influence of side chains on the conformational entropy of the polypeptide backbone.
    Stites WE; Pranata J
    Proteins; 1995 Jun; 22(2):132-40. PubMed ID: 7567961
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High directional Monte Carlo procedure coupled with the temperature heating and annealing as a method to obtain the global energy minimum structure of polypeptides and proteins.
    Shin JK; Jhon MS
    Biopolymers; 1991 Feb; 31(2):177-85. PubMed ID: 2043748
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?
    Kaya H; Chan HS
    J Mol Biol; 2002 Jan; 315(4):899-909. PubMed ID: 11812156
    [TBL] [Abstract][Full Text] [Related]  

  • 80. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin.
    Ripoll DR; Scheraga HA
    Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.