These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 2088528)
1. Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Ishai-Michaeli R; Eldor A; Vlodavsky I Cell Regul; 1990 Oct; 1(11):833-42. PubMed ID: 2088528 [TBL] [Abstract][Full Text] [Related]
2. Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. Vlodavsky I; Fuks Z; Ishai-Michaeli R; Bashkin P; Levi E; Korner G; Bar-Shavit R; Klagsbrun M J Cell Biochem; 1991 Feb; 45(2):167-76. PubMed ID: 1711529 [TBL] [Abstract][Full Text] [Related]
3. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Vlodavsky I; Eldor A; Haimovitz-Friedman A; Matzner Y; Ishai-Michaeli R; Lider O; Naparstek Y; Cohen IR; Fuks Z Invasion Metastasis; 1992; 12(2):112-27. PubMed ID: 1399400 [TBL] [Abstract][Full Text] [Related]
4. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes. Matzner Y; Bar-Ner M; Yahalom J; Ishai-Michaeli R; Fuks Z; Vlodavsky I J Clin Invest; 1985 Oct; 76(4):1306-13. PubMed ID: 2997275 [TBL] [Abstract][Full Text] [Related]
5. Role of heparanase in platelet and tumor cell interactions with the subendothelial extracellular matrix. Eldor A; Bar-Ner M; Yahalom J; Fuks Z; Vlodavsky I Semin Thromb Hemost; 1987 Oct; 13(4):475-88. PubMed ID: 3321438 [TBL] [Abstract][Full Text] [Related]
6. Sulfate moieties in the subendothelial extracellular matrix are involved in basic fibroblast growth factor sequestration, dimerization, and stimulation of cell proliferation. Miao HQ; Ishai-Michaeli R; Atzmon R; Peretz T; Vlodavsky I J Biol Chem; 1996 Mar; 271(9):4879-86. PubMed ID: 8617759 [TBL] [Abstract][Full Text] [Related]
7. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Vlodavsky I; Korner G; Ishai-Michaeli R; Bashkin P; Bar-Shavit R; Fuks Z Cancer Metastasis Rev; 1990 Nov; 9(3):203-26. PubMed ID: 1705486 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: evidence for cytokine dependence and detection of a novel sulfatase. Bartlett MR; Underwood PA; Parish CR Immunol Cell Biol; 1995 Apr; 73(2):113-24. PubMed ID: 7797231 [TBL] [Abstract][Full Text] [Related]
9. Structural requirements for inhibition of melanoma lung colonization by heparanase inhibiting species of heparin. Bitan M; Mohsen M; Levi E; Wygoda MR; Miao HQ; Lider O; Svahn CM; Ekre HP; Ishai-Michaeli R; Bar-Shavit R Isr J Med Sci; 1995; 31(2-3):106-18. PubMed ID: 7744578 [TBL] [Abstract][Full Text] [Related]
10. Lung colonization by and heparanase activity in in vitro transformed 3T3 cells rendered highly tumorigenic by an in vivo passage. Katz BZ; Ishai-Michaeli R; Zusman T; Vlodavsky I; Witz IP Invasion Metastasis; 1994-1995; 14(1-6):276-89. PubMed ID: 7657521 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Goshen R; Hochberg AA; Korner G; Levy E; Ishai-Michaeli R; Elkin M; de Groot N; Vlodavsky I Mol Hum Reprod; 1996 Sep; 2(9):679-84. PubMed ID: 9239682 [TBL] [Abstract][Full Text] [Related]
12. Involvement of both heparanase and plasminogen activator in lymphoma cell-mediated degradation of heparan sulfate in the subendothelial extracellular matrix. Bar-Ner M; Mayer M; Schirrmacher V; Vlodavsky I J Cell Physiol; 1986 Aug; 128(2):299-306. PubMed ID: 2426287 [TBL] [Abstract][Full Text] [Related]
14. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells. Savion N; Disatnik MH; Nevo Z J Cell Physiol; 1987 Jan; 130(1):77-84. PubMed ID: 3805131 [TBL] [Abstract][Full Text] [Related]
15. Thrombin enhances degradation of heparan sulfate in the extracellular matrix by tumor cell heparanase. Benezra M; Vlodavsky I; Bar-Shavit R Exp Cell Res; 1992 Jul; 201(1):208-15. PubMed ID: 1612123 [TBL] [Abstract][Full Text] [Related]
16. Heparanase and platelet factor-4 induce smooth muscle cell proliferation and migration via bFGF release from the ECM. Myler HA; West JL J Biochem; 2002 Jun; 131(6):913-22. PubMed ID: 12038989 [TBL] [Abstract][Full Text] [Related]
17. Importance of size and sulfation of heparin in release of basic fibroblast growth factor from the vascular endothelium and extracellular matrix. Ishai-Michaeli R; Svahn CM; Weber M; Chajek-Shaul T; Korner G; Ekre HP; Vlodavsky I Biochemistry; 1992 Feb; 31(7):2080-8. PubMed ID: 1536850 [TBL] [Abstract][Full Text] [Related]
18. Extracellular matrix produced by cultured corneal and aortic endothelial cells contains active tissue-type and urokinase-type plasminogen activators. Korner G; Bjornsson TD; Vlodavsky I J Cell Physiol; 1993 Mar; 154(3):456-65. PubMed ID: 8436596 [TBL] [Abstract][Full Text] [Related]
19. Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by highly metastatic lymphoma cells. Bar-Ner M; Kramer MD; Schirrmacher V; Ishai-Michaeli R; Fuks Z; Vlodavsky I Int J Cancer; 1985 Apr; 35(4):483-91. PubMed ID: 3157649 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Bar-Ner M; Eldor A; Wasserman L; Matzner Y; Cohen IR; Fuks Z; Vlodavsky I Blood; 1987 Aug; 70(2):551-7. PubMed ID: 2955820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]