These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20885421)

  • 41. A quantitative model of transcription factor-activated gene expression.
    Kim HD; O'Shea EK
    Nat Struct Mol Biol; 2008 Nov; 15(11):1192-8. PubMed ID: 18849996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unconventional genomic architecture in the budding yeast saccharomyces cerevisiae masks the nested antisense gene NAG1.
    Ma J; Dobry CJ; Krysan DJ; Kumar A
    Eukaryot Cell; 2008 Aug; 7(8):1289-98. PubMed ID: 18310357
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle.
    Ferrezuelo F; Colomina N; Futcher B; Aldea M
    Genome Biol; 2010; 11(6):R67. PubMed ID: 20573214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.
    Nishizawa M; Komai T; Katou Y; Shirahige K; Ito T; Toh-E A
    PLoS Biol; 2008 Dec; 6(12):2817-30. PubMed ID: 19108609
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence that Swi/Snf directly represses transcription in S. cerevisiae.
    Martens JA; Winston F
    Genes Dev; 2002 Sep; 16(17):2231-6. PubMed ID: 12208846
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcription RINGs in repair.
    Osley MA
    Nat Cell Biol; 2005 Jun; 7(6):553-5. PubMed ID: 15928703
    [No Abstract]   [Full Text] [Related]  

  • 48. UASs and enhancers: common mechanism of transcriptional activation in yeast and mammals.
    Guarente L
    Cell; 1988 Feb; 52(3):303-5. PubMed ID: 2894251
    [No Abstract]   [Full Text] [Related]  

  • 49. Noise can induce bimodality in positive transcriptional feedback loops without bistability.
    To TL; Maheshri N
    Science; 2010 Feb; 327(5969):1142-5. PubMed ID: 20185727
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae.
    Todeschini AL; Morillon A; Springer M; Lesage P
    Mol Cell Biol; 2005 Sep; 25(17):7459-72. PubMed ID: 16107695
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative genomics of transcriptional regulation in yeasts and its application to identification of a candidate alpha-isopropylmalate transporter.
    Kovaleva GY; Bazykin GA; Brudno M; Gelfand MS
    J Bioinform Comput Biol; 2006 Oct; 4(5):981-98. PubMed ID: 17099937
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic control of gene regulatory logic by seemingly redundant transcription factors.
    AkhavanAghdam Z; Sinha J; Tabbaa OP; Hao N
    Elife; 2016 Sep; 5():. PubMed ID: 27690227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus.
    Kaplan CD; Holland MJ; Winston F
    J Biol Chem; 2005 Jan; 280(2):913-22. PubMed ID: 15531585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae.
    Matsufuji Y; Nakagawa T; Fujimura S; Tani A; Nakagawa J
    J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The DNA-binding domain of yeast Hsf1 regulates both DNA-binding and transcriptional activities.
    Yamamoto A; Sakurai H
    Biochem Biophys Res Commun; 2006 Aug; 346(4):1324-9. PubMed ID: 16806072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Yeast Mpk1 mitogen-activated protein kinase activates transcription through Swi4/Swi6 by a noncatalytic mechanism that requires upstream signal.
    Kim KY; Truman AW; Levin DE
    Mol Cell Biol; 2008 Apr; 28(8):2579-89. PubMed ID: 18268013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1.
    Gajda A; Towpik J; Steuerwald U; Müller CW; Lefebvre O; Boguta M
    J Biol Chem; 2010 Nov; 285(46):35719-27. PubMed ID: 20817737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RB from a bud's eye view.
    Schaefer JB; Breeden LL
    Cell; 2004 Jun; 117(7):849-50. PubMed ID: 15210104
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The GTS1 gene product facilitates the self-organization of the energy metabolism oscillation in the continuous culture of the yeast Saccharomyces cerevisiae.
    Akiyama S; Tsurugi K
    FEMS Microbiol Lett; 2003 Nov; 228(1):105-10. PubMed ID: 14612244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stress-responsive genes.
    Demczuk A; Guha N; Nguyen PH; Desai P; Chang J; Guzinska K; Rollins J; Ghosh CC; Goodwin L; Vancura A
    Eukaryot Cell; 2008 Jun; 7(6):967-79. PubMed ID: 18375619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.