These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20885598)

  • 1. Fluorescence lidar multicolor imaging of vegetation.
    Edner H; Johansson J; Svanberg S; Wallinder E
    Appl Opt; 1994 May; 33(13):2471-9. PubMed ID: 20885598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.
    Chen T; Madey JM; Price FM; Sharma SK; Lienert B
    Appl Spectrosc; 2007 Jun; 61(6):624-9. PubMed ID: 17650374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.
    Grönlund R; Lundqvist M; Svanberg S
    Appl Spectrosc; 2006 Aug; 60(8):853-9. PubMed ID: 16925920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system.
    Sica RJ; Sargoytchev S; Argall PS; Borra EF; Girard L; Sparrow CT; Flatt S
    Appl Opt; 1995 Oct; 34(30):6925-36. PubMed ID: 21060554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for formaldehyde detection in flames and engines using a single-mode Nd:YAG/OPO laser system.
    Brackmann C; Li Z; Rupinski M; Docquier N; Pengloan G; Aldén M
    Appl Spectrosc; 2005 Jun; 59(6):763-8. PubMed ID: 16053542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical diagnostic system based on simultaneous multispectral fluorescence imaging.
    Andersson-Engels S; Johansson J; Svanberg S
    Appl Opt; 1994 Dec; 33(34):8022-9. PubMed ID: 20963019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile lidar system for environmental probing.
    Fredriksson K; Galle B; Nyström K; Svanberg S
    Appl Opt; 1981 Dec; 20(24):4181-9. PubMed ID: 20372350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera.
    Efremov EV; Buijs JB; Gooijer C; Ariese F
    Appl Spectrosc; 2007 Jun; 61(6):571-8. PubMed ID: 17650366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy.
    Östmark H; Nordberg M; Carlsson TE
    Appl Opt; 2011 Oct; 50(28):5592-9. PubMed ID: 22016229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters.
    Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP
    Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile mobile lidar system for environmental monitoring.
    Weibring P; Edner H; Svanberg S
    Appl Opt; 2003 Jun; 42(18):3583-94. PubMed ID: 12833965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Stokes Raman spectrometry with 1064-nm excitation: an effective instrumental approach for field detection of explosives.
    Lewis ML; Lewis IR; Griffiths PR
    Appl Spectrosc; 2004 Apr; 58(4):420-7. PubMed ID: 17140491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region.
    Bykov S; Lednev I; Ianoul A; Mikhonin A; Munro C; Asher SA
    Appl Spectrosc; 2005 Dec; 59(12):1541-52. PubMed ID: 16390595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence spectra and images of latent fingerprints excited with a tunable laser in the ultraviolet region.
    Akiba N; Saitoh N; Kuroki K
    J Forensic Sci; 2007 Sep; 52(5):1103-6. PubMed ID: 17767656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater vehicles equipped with laser beacons and tracked from aircraft.
    Estes LE; Garcia RA; Lizotte CD
    Appl Opt; 1996 Aug; 35(24):4843-9. PubMed ID: 21102910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile lidar for simultaneous measurements of ozone, aerosols, and temperature in the stratosphere.
    Uchino O; Tabata I
    Appl Opt; 1991 May; 30(15):2005-12. PubMed ID: 20700169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.
    Saito Y; Kakuda K; Yokoyama M; Kubota T; Tomida T; Park HD
    Appl Opt; 2016 Aug; 55(24):6727-34. PubMed ID: 27556995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring.
    Saito Y; Kanoh M; Hatake K; Kawahara TD; Nomura A
    Appl Opt; 1998 Jan; 37(3):431-7. PubMed ID: 18268602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.