These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 20885695)

  • 1. Lead-vapor filters for high-spectral-resolution temperature lidar.
    Voss E; Weitkamp C; Michaelis W
    Appl Opt; 1994 May; 33(15):3250-60. PubMed ID: 20885695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.
    Fraczek M; Behrendt A; Schmitt N
    Appl Opt; 2012 Jan; 51(2):148-66. PubMed ID: 22270512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.
    Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I
    Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system.
    Ponsardin P; Higdon NS; Grossmann BE; Browell EV
    Appl Opt; 1994 Sep; 33(27):6439-50. PubMed ID: 20941182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser.
    Chu Z; Wilkerson TD; Singh UN
    Appl Opt; 1993 Feb; 32(6):992-8. PubMed ID: 20802779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edge technique: theory and application to the lidar measurement of atmospheric wind.
    Korb CL; Gentry BM; Weng CY
    Appl Opt; 1992 Jul; 31(21):4202-13. PubMed ID: 20725404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Opt Lett; 2004 May; 29(10):1063-5. PubMed ID: 15181986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region.
    Browell EV; Ismail S; Grossmann BE
    Appl Opt; 1991 Apr; 30(12):1517-24. PubMed ID: 20700314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere.
    Ansmann A; Bosenberg J
    Appl Opt; 1987 Aug; 26(15):3026-32. PubMed ID: 20490005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air.
    Witschas B; Vieitez MO; van Duijn EJ; Reitebuch O; van de Water W; Ubachs W
    Appl Opt; 2010 Aug; 49(22):4217-27. PubMed ID: 20676176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1315-22. PubMed ID: 15765712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere.
    Hua D; Kobayashi T
    Appl Opt; 2005 Oct; 44(30):6474-8. PubMed ID: 16252659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lidar setup for daytime and nighttime probing of stratospheric ozone and measurements in polar and equatorial regions.
    Steinbrecht W; Rothe KW; Walther H
    Appl Opt; 1989 Sep; 28(17):3616-24. PubMed ID: 20555745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system.
    Venable DD; Whiteman DN; Calhoun MN; Dirisu AO; Connell RM; Landulfo E
    Appl Opt; 2011 Aug; 50(23):4622-32. PubMed ID: 21833140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic vapor filter for two-dimensional Rayleigh imaging experiments with a narrow-band KrF excimer laser.
    Gölz P; Andresen P
    Appl Opt; 1996 Oct; 35(30):6054-61. PubMed ID: 21127620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic vapor filter revisited: a Cabannes scattering temperature/wind lidar at 770 nm.
    She CY; Krueger DA; Yan ZA; Hu X
    Opt Express; 2021 Feb; 29(3):4338-4362. PubMed ID: 33771015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology.
    Bösenberg J
    Appl Opt; 1998 Jun; 37(18):3845-60. PubMed ID: 18273353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere.
    Witschas B; Lemmerz C; Reitebuch O
    Appl Opt; 2012 Sep; 51(25):6207-19. PubMed ID: 22945169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.