BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 20885782)

  • 21. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.
    Tribulo C; Aybar MJ; Nguyen VH; Mullins MC; Mayor R
    Development; 2003 Dec; 130(26):6441-52. PubMed ID: 14627721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.
    Marchak A; Grant PA; Neilson KM; Datta Majumdar H; Yaklichkin S; Johnson D; Moody SA
    Dev Biol; 2017 Sep; 429(1):213-224. PubMed ID: 28663133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A conserved role for non-neural ectoderm cells in early neural development.
    Cajal M; Creuzet SE; Papanayotou C; Sabéran-Djoneidi D; Chuva de Sousa Lopes SM; Zwijsen A; Collignon J; Camus A
    Development; 2014 Nov; 141(21):4127-38. PubMed ID: 25273086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development.
    Phillips BT; Kwon HJ; Melton C; Houghtaling P; Fritz A; Riley BB
    Dev Biol; 2006 Jun; 294(2):376-90. PubMed ID: 16631154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation.
    Matsuo-Takasaki M; Matsumura M; Sasai Y
    Development; 2005 Sep; 132(17):3885-94. PubMed ID: 16079156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo.
    Zhang YT; Lander AD; Nie Q
    J Theor Biol; 2007 Oct; 248(4):579-89. PubMed ID: 17673236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AP2γ regulates neural and epidermal development downstream of the BMP pathway at early stages of ectodermal patterning.
    Qiao Y; Zhu Y; Sheng N; Chen J; Tao R; Zhu Q; Zhang T; Qian C; Jing N
    Cell Res; 2012 Nov; 22(11):1546-61. PubMed ID: 22945355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of BMP signaling during early development of the annelid Capitella teleta.
    Webster NB; Corbet M; Sur A; Meyer NP
    Dev Biol; 2021 Oct; 478():183-204. PubMed ID: 34216573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands.
    Ramel MC; Hill CS
    Dev Biol; 2013 Jun; 378(2):170-82. PubMed ID: 23499658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chordin, FGF signaling, and mesodermal factors cooperate in zebrafish neural induction.
    Londin ER; Niemiec J; Sirotkin HI
    Dev Biol; 2005 Mar; 279(1):1-19. PubMed ID: 15708554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction.
    Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A
    Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation.
    Hartley KO; Hardcastle Z; Friday RV; Amaya E; Papalopulu N
    Dev Biol; 2001 Oct; 238(1):168-84. PubMed ID: 11784002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction.
    Wawersik S; Evola C; Whitman M
    Dev Biol; 2005 Jan; 277(2):425-42. PubMed ID: 15617685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates.
    Su YH; Chen YC; Ting HC; Fan TP; Lin CY; Wang KT; Yu JK
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12925-12932. PubMed ID: 31189599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishing the pre-placodal region and breaking it into placodes with distinct identities.
    Saint-Jeannet JP; Moody SA
    Dev Biol; 2014 May; 389(1):13-27. PubMed ID: 24576539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular basis of craniofacial placode development.
    Singh S; Groves AK
    Wiley Interdiscip Rev Dev Biol; 2016; 5(3):363-76. PubMed ID: 26952139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4.
    Reim G; Brand M
    Development; 2006 Jul; 133(14):2757-70. PubMed ID: 16775002
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Watanabe T; Yamamoto T; Tsukano K; Hirano S; Horikawa A; Michiue T
    Development; 2018 Oct; 145(20):. PubMed ID: 30291163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b.
    Hans S; Christison J; Liu D; Westerfield M
    BMC Dev Biol; 2007 Jan; 7():5. PubMed ID: 17239227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.