These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20886118)

  • 61. Cysteine Substitution and Labeling Provide Insight into Channelrhodopsin-2 Ion Conductance.
    Richards R; Dempski RE
    Biochemistry; 2015 Sep; 54(37):5665-8. PubMed ID: 26322955
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway.
    Guo W; Hight AE; Chen JX; Klapoetke NC; Hancock KE; Shinn-Cunningham BG; Boyden ES; Lee DJ; Polley DB
    Sci Rep; 2015 May; 5():10319. PubMed ID: 26000557
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity.
    Jun NY; Cardin JA
    eNeuro; 2020; 7(1):. PubMed ID: 31822522
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states.
    Richards R; Dempski RE
    J Biol Chem; 2017 May; 292(18):7314-7326. PubMed ID: 28302720
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation.
    Ryu J; Vincent PFY; Ziogas NK; Xu L; Sadeghpour S; Curtin J; Alexandris AS; Stewart N; Sima R; du Lac S; Glowatzki E; Koliatsos VE
    PLoS One; 2019; 14(11):e0224846. PubMed ID: 31710637
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools.
    AzimiHashemi N; Erbguth K; Vogt A; Riemensperger T; Rauch E; Woodmansee D; Nagpal J; Brauner M; Sheves M; Fiala A; Kattner L; Trauner D; Hegemann P; Gottschalk A; Liewald JF
    Nat Commun; 2014 Dec; 5():5810. PubMed ID: 25503804
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.
    VanGordon MR; Gyawali G; Rick SW; Rempe SB
    Biophys J; 2017 Mar; 112(5):943-952. PubMed ID: 28297653
    [TBL] [Abstract][Full Text] [Related]  

  • 68. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
    Lin JY; Knutsen PM; Muller A; Kleinfeld D; Tsien RY
    Nat Neurosci; 2013 Oct; 16(10):1499-508. PubMed ID: 23995068
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vivo optogenetic control of striatal and thalamic neurons in non-human primates.
    Galvan A; Hu X; Smith Y; Wichmann T
    PLoS One; 2012; 7(11):e50808. PubMed ID: 23226390
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex.
    Sparks DW; Tian MK; Sargin D; Venkatesan S; Intson K; Lambe EK
    Front Neural Circuits; 2017; 11():107. PubMed ID: 29354034
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Diversity of Chlamydomonas channelrhodopsins.
    Hou SY; Govorunova EG; Ntefidou M; Lane CE; Spudich EN; Sineshchekov OA; Spudich JL
    Photochem Photobiol; 2012; 88(1):119-28. PubMed ID: 22044280
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice.
    Wang H; Peca J; Matsuzaki M; Matsuzaki K; Noguchi J; Qiu L; Wang D; Zhang F; Boyden E; Deisseroth K; Kasai H; Hall WC; Feng G; Augustine GJ
    Proc Natl Acad Sci U S A; 2007 May; 104(19):8143-8. PubMed ID: 17483470
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications.
    Dawydow A; Gueta R; Ljaschenko D; Ullrich S; Hermann M; Ehmann N; Gao S; Fiala A; Langenhan T; Nagel G; Kittel RJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13972-7. PubMed ID: 25201989
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Temporally precise single-cell-resolution optogenetics.
    Shemesh OA; Tanese D; Zampini V; Linghu C; Piatkevich K; Ronzitti E; Papagiakoumou E; Boyden ES; Emiliani V
    Nat Neurosci; 2017 Dec; 20(12):1796-1806. PubMed ID: 29184208
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Two-photon excitation of channelrhodopsin-2 at saturation.
    Rickgauer JP; Tank DW
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):15025-30. PubMed ID: 19706471
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Kinetic profiles of photocurrents in cells expressing two types of channelrhodopsin genes.
    Watanabe Y; Sugano E; Tabata K; Ozaki T; Saito T; Tamai M; Tomita H
    Biochem Biophys Res Commun; 2018 Feb; 496(3):814-819. PubMed ID: 29395082
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization.
    Berthold P; Tsunoda SP; Ernst OP; Mages W; Gradmann D; Hegemann P
    Plant Cell; 2008 Jun; 20(6):1665-77. PubMed ID: 18552201
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function.
    Bamann C; Kirsch T; Nagel G; Bamberg E
    J Mol Biol; 2008 Jan; 375(3):686-94. PubMed ID: 18037436
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Light-induced helix movements in channelrhodopsin-2.
    Müller M; Bamann C; Bamberg E; Kühlbrandt W
    J Mol Biol; 2015 Jan; 427(2):341-9. PubMed ID: 25451024
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.