These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20886168)

  • 1. Destabilisation of complex hydrides through size effects.
    Christian M; Aguey-Zinsou KF
    Nanoscale; 2010 Dec; 2(12):2587-90. PubMed ID: 20886168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-Effective Hierarchical Catalysts for Promoting Hydrogen Release from Complex Hydrides.
    Yang CH; Hsu CP; Lee SL; Wang KW; Chang JK
    ChemSusChem; 2015 Aug; 8(16):2713-8. PubMed ID: 26150091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel catalytic effects of fullerene for LiBH4 hydrogen uptake and release.
    Wellons MS; Berseth PA; Zidan R
    Nanotechnology; 2009 May; 20(20):204022. PubMed ID: 19420670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
    Vegge T
    Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.
    Zhang X; Liu Y; Wang K; Li Y; Gao M; Pan H
    ChemSusChem; 2015 Dec; 8(24):4180-8. PubMed ID: 26632764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size effects on the hydrogen storage properties of nanoscaffolded Li3BN2H8.
    Wu H; Zhou W; Wang K; Udovic TJ; Rush JJ; Yildirim T; Bendersky LA; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE; Meyer MS
    Nanotechnology; 2009 May; 20(20):204002. PubMed ID: 19420650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of particle size on hydrogen release from sodium alanate nanoparticles.
    Mueller T; Ceder G
    ACS Nano; 2010 Oct; 4(10):5647-56. PubMed ID: 20849095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetic enhancement of hydrogen cycling in NaAlH(4) by melt infusion into nanoporous carbon aerogel.
    Stephens RD; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE
    Nanotechnology; 2009 May; 20(20):204018. PubMed ID: 19420666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ X-ray Raman spectroscopy of LiBH4.
    Miedema PS; Ngene P; van der Eerden AM; Weng TC; Nordlund D; Sokaras D; Alonso-Mori R; Juhin A; de Jongh PE; de Groot FM
    Phys Chem Chem Phys; 2012 Apr; 14(16):5581-7. PubMed ID: 22428166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning LiBH
    Puszkiel J; Gasnier A; Amica G; Gennari F
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31906111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoted dehydrogenation in ammine lithium borohydride supported by carbon nanotubes.
    Chen X; Li S; Guo Y; Yu X
    Dalton Trans; 2011 Oct; 40(38):9679-89. PubMed ID: 21850349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ Raman cell for high pressure and temperature studies of metal and complex hydrides.
    Domènech-Ferrer R; Ziegs F; Klod S; Lindemann I; Voigtländer R; Dunsch L; Gutfleisch O
    Anal Chem; 2011 Apr; 83(8):3199-204. PubMed ID: 21410226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen dynamics in Na3AlH6: a combined density functional theory and quasielastic neutron scattering study.
    Voss J; Shi Q; Jacobsen HS; Zamponi M; Lefmann K; Vegge T
    J Phys Chem B; 2007 Apr; 111(15):3886-92. PubMed ID: 17388555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BH4− self-diffusion in liquid LiBH4.
    Martelli P; Remhof A; Borgschulte A; Mauron P; Wallacher D; Kemner E; Russina M; Pendolino F; Züttel A
    J Phys Chem A; 2010 Sep; 114(37):10117-21. PubMed ID: 20806929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.
    Stavila V; Bhakta RK; Alam TM; Majzoub EH; Allendorf MD
    ACS Nano; 2012 Nov; 6(11):9807-17. PubMed ID: 23075161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased air stability and decreased dehydrogenation temperature of LiBH4 via modification within poly(methylmethacrylate).
    Huang J; Yan Y; Ouyang L; Wang H; Liu J; Zhu M
    Dalton Trans; 2014 Jan; 43(2):410-3. PubMed ID: 24216757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The release of hydrogen reaction of graphene modified NaAlH4.
    Zhang S; Zhou Z; Liu J; Kan M
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9993-6. PubMed ID: 22413337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New carbon-rich materials for electronics, lithium battery, and hydrogen storage applications.
    Grimsdale AC; Wu J; Müllen K
    Chem Commun (Camb); 2005 May; (17):2197-204. PubMed ID: 15856096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical screening of nanoscale oxide reactivity with LiBH4.
    Opalka SM; Tang X; Laube BL; Vanderspurt TH
    Nanotechnology; 2009 May; 20(20):204024. PubMed ID: 19420672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling.
    Dobbins T; Abrecht M; Uprety Y; Moore K
    Nanotechnology; 2009 May; 20(20):204014. PubMed ID: 19420662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.