These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20886514)

  • 1. Comparative anatomy and osteohistology of hyperelongate neural spines in the sphenacodontids Sphenacodon and Dimetrodon (Amniota: Synapsida).
    Huttenlocker AK; Rega E; Sumida SS
    J Morphol; 2010 Dec; 271(12):1407-21. PubMed ID: 20886514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone histology and microanatomy of Edaphosaurus and Dimetrodon (Amniota, Synapsida) vertebrae from the Lower Permian of Texas.
    Agliano A; Sander PM; Wintrich T
    Anat Rec (Hoboken); 2021 Mar; 304(3):570-583. PubMed ID: 32484294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimetrodon (Synapsida: Sphenacodontidae) from the cave system at Richards Spur, OK, USA, and a comparison of Early Permian-aged vertebrate paleoassemblages.
    Brink KS; MacDougall MJ; Reisz RR
    Naturwissenschaften; 2019 Jan; 106(1-2):2. PubMed ID: 30610457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteohistology of the hyperelongate hemispinous processes of Amargasaurus cazaui (Dinosauria: Sauropoda): Implications for soft tissue reconstruction and functional significance.
    Cerda IA; Novas FE; Carballido JL; Salgado L
    J Anat; 2022 Jun; 240(6):1005-1019. PubMed ID: 35332552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden dental diversity in the oldest terrestrial apex predator Dimetrodon.
    Brink KS; Reisz RR
    Nat Commun; 2014; 5():3269. PubMed ID: 24509889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First record of plicidentine in Synapsida and patterns of tooth root shape change in Early Permian sphenacodontians.
    Brink KS; LeBlanc AR; Reisz RR
    Naturwissenschaften; 2014 Nov; 101(11):883-92. PubMed ID: 25179435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteohistological correlates of muscular attachment in terrestrial and freshwater Testudines.
    Pereyra ME; Bona P; Cerda IA; Desántolo B
    J Anat; 2019 Jun; 234(6):875-898. PubMed ID: 30901084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origins of mammalian vertebral function revealed through digital bending experiments.
    Jones KE; Angielczyk KD; Pierce SE
    Proc Biol Sci; 2024 Jul; 291(2026):20240820. PubMed ID: 38981526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology.
    Arratia G; Schultze HP; Casciotta J
    J Morphol; 2001 Nov; 250(2):101-72. PubMed ID: 11746457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fossils reveal the complex evolutionary history of the mammalian regionalized spine.
    Jones KE; Angielczyk KD; Polly PD; Head JJ; Fernandez V; Lungmus JK; Tulga S; Pierce SE
    Science; 2018 Sep; 361(6408):1249-1252. PubMed ID: 30237356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps.
    Faure-Brac MG; Cubo J
    Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1793):20190138. PubMed ID: 31928185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reevaluation of the caudal skeleton of certain actinopterygian fishes: III. Salmonidae. Homologization of caudal skeletal structures.
    Arratia G; Schultze HP
    J Morphol; 1992 Nov; 214(2):187-249. PubMed ID: 29865606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revision of the Oriental subfamily Heteropteryginae Kirby, 1896, with a re-arrangement of the family Heteropterygidae and the descriptions of five new species of Haaniella Kirby, 1904. (Phasmatodea: Areolatae: Heteropterygidae).
    Hennemann FH; Conle OV; Brock PD; Seow-Choen F
    Zootaxa; 2016 Sep; 4159(1):1-219. PubMed ID: 27615907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A.
    Howes TR; Summers BR; Kingsley DM
    BMC Biol; 2017 Dec; 15(1):115. PubMed ID: 29212540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A caseian point for the evolution of a diaphragm homologue among the earliest synapsids.
    Lambertz M; Shelton CD; Spindler F; Perry SF
    Ann N Y Acad Sci; 2016 Dec; 1385(1):3-20. PubMed ID: 27859325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology.
    Woodward HN; Horner JR; Farlow JO
    PeerJ; 2014; 2():e422. PubMed ID: 24949239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone histology of phytosaur, aetosaur, and other archosauriform osteoderms (Eureptilia, Archosauromorpha).
    Scheyer TM; Desojo JB; Cerda IA
    Anat Rec (Hoboken); 2014 Feb; 297(2):240-60. PubMed ID: 24376217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Meniscoids of the intervertebral joints].
    Kos J; Hert J; Sevcík P
    Acta Chir Orthop Traumatol Cech; 2002; 69(3):149-57. PubMed ID: 12125216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural environment and thermal behaviour of Dimetrodon limbatus.
    Florides GA; Kalogirou SA; Tassou SA; Wrobel L
    J Therm Biol; 2001 Feb; 26(1):15-20. PubMed ID: 11070340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cranial bone histology of
    Gruntmejer K; Konietzko-Meier D; Bodzioch A
    PeerJ; 2016; 4():e2685. PubMed ID: 27843719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.