BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20886534)

  • 1. Dynamics of sleep-wake cyclicity across the fetal period in sheep (Ovis aries).
    Karlsson KA; Arnardóttir H; Robinson SR; Blumberg MS
    Dev Psychobiol; 2011 Jan; 53(1):89-95. PubMed ID: 20886534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of sleep-wake cyclicity in developing rats.
    Blumberg MS; Seelke AM; Lowen SB; Karlsson KA
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14860-4. PubMed ID: 16192355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of sleep-wake cyclicity at night across the human lifespan.
    Arnardóttir H; Thorsteinsson H; Karlsson KÆ
    Front Neurol; 2010; 1():156. PubMed ID: 21212828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental emergence of power-law wake behavior depends upon the functional integrity of the locus coeruleus.
    Gall AJ; Joshi B; Best J; Florang VR; Doorn JA; Blumberg MS
    Sleep; 2009 Jul; 32(7):920-6. PubMed ID: 19639755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans.
    Sorribes A; Thornorsteinsson H; Arnardóttir H; Jóhannesdóttir IÞ; Sigurgeirsson B; de Polavieja GG; Karlsson KÆ
    Front Neural Circuits; 2013; 7():178. PubMed ID: 24312015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy.
    Patel M; Rangan A
    J Theor Biol; 2017 Aug; 426():82-95. PubMed ID: 28552556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical properties of sleep-wake behavior in the rat and their relation to circadian and ultradian phases.
    Stephenson R; Famina S; Caron AM; Lim J
    Sleep; 2013 Sep; 36(9):1377-90. PubMed ID: 23997372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the bout durations of sleep and wakefulness.
    McShane BB; Galante RJ; Jensen ST; Naidoo N; Pack AI; Wyner A
    J Neurosci Methods; 2010 Nov; 193(2):321-33. PubMed ID: 20817037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common scale-invariant patterns of sleep-wake transitions across mammalian species.
    Lo CC; Chou T; Penzel T; Scammell TE; Strecker RE; Stanley HE; Ivanov PCh
    Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17545-8. PubMed ID: 15583127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism.
    Patel M
    J Theor Biol; 2016 Apr; 394():127-136. PubMed ID: 26802484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the sleep-wake switch in rats during the P2-P21 early infancy period.
    Patel M; Joshi B
    Front Netw Physiol; 2023; 3():1340722. PubMed ID: 38239232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenatal development of sleep-wake patterns in sheep.
    Szeto HH; Hinman DJ
    Sleep; 1985 Dec; 8(4):347-55. PubMed ID: 3880175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The preoptic hypothalamus and basal forebrain play opposing roles in the descending modulation of sleep and wakefulness in infant rats.
    Mohns EJ; Karlsson KA; Blumberg MS
    Eur J Neurosci; 2006 Mar; 23(5):1301-10. PubMed ID: 16553791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental divergence of sleep-wake patterns in orexin knockout and wild-type mice.
    Blumberg MS; Coleman CM; Johnson ED; Shaw C
    Eur J Neurosci; 2007 Jan; 25(2):512-8. PubMed ID: 17284193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormally abrupt transitions from sleep-to-wake in Huntington's disease sheep (Ovis aries) are revealed by automated analysis of sleep/wake transition dynamics.
    Schneider WT; Vas S; Nicol AU; Morton AJ
    PLoS One; 2021; 16(5):e0251767. PubMed ID: 33984047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power law versus exponential state transition dynamics: application to sleep-wake architecture.
    Chu-Shore J; Westover MB; Bianchi MT
    PLoS One; 2010 Dec; 5(12):e14204. PubMed ID: 21151998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of the zero sum principle for circadian, homeostatic and allostatic regulation of sleep-wake state in the rat.
    Stephenson R; Caron AM; Famina S
    Physiol Behav; 2016 Dec; 167():35-48. PubMed ID: 27594095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of rapid eye movement sleep deprivation during late pregnancy on newborns' sleep.
    Aswathy BS; Kumar VM; Gulia KK
    J Sleep Res; 2018 Apr; 27(2):197-205. PubMed ID: 28560797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans.
    Dijk DJ; Czeisler CA
    Neurosci Lett; 1994 Jan; 166(1):63-8. PubMed ID: 8190360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.