These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20886590)

  • 1. A carbon/titanium vanadium nitride composite for lithium storage.
    Cui G; Gu L; Thomas A; Fu L; van Aken PA; Antonietti M; Maier J
    Chemphyschem; 2010 Oct; 11(15):3219-23. PubMed ID: 20886590
    [No Abstract]   [Full Text] [Related]  

  • 2. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance.
    Zhou Y; Lee J; Lee CW; Wu M; Yoon S
    ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.
    Shen L; Yuan C; Luo H; Zhang X; Yang S; Lu X
    Nanoscale; 2011 Feb; 3(2):572-4. PubMed ID: 21076732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced lithium storage capacity and cyclic performance of nanostructured TiO2-MoO3 hybrid electrode.
    Paek SM; Kang JH; Jung H; Hwang SJ; Choy JH
    Chem Commun (Camb); 2009 Dec; (48):7536-8. PubMed ID: 20024271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties.
    Shen L; Uchaker E; Yuan C; Nie P; Zhang M; Zhang X; Cao G
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2985-92. PubMed ID: 22630038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TiO(2) nanocages: fast synthesis, interior functionalization and improved lithium storage properties.
    Wang Z; Lou XW
    Adv Mater; 2012 Aug; 24(30):4124-9. PubMed ID: 22311574
    [No Abstract]   [Full Text] [Related]  

  • 8. Hierarchical protonated titanate nanostructures for lithium-ion batteries.
    Zhang Y; Tang Y; Yin S; Zeng Z; Zhang H; Li CM; Dong Z; Chen Z; Chen X
    Nanoscale; 2011 Oct; 3(10):4074-7. PubMed ID: 21853212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage.
    Yang S; Feng X; Müllen K
    Adv Mater; 2011 Aug; 23(31):3575-9. PubMed ID: 21726002
    [No Abstract]   [Full Text] [Related]  

  • 11. Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices.
    Zhang X; Böckenfeld N; Berkemeier F; Balducci A
    ChemSusChem; 2014 Jun; 7(6):1710-8. PubMed ID: 24683038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric anatase TiO₂ nanocrystals with exposed high-index facets and their excellent lithium storage properties.
    Wu HB; Chen JS; Lou XW; Hng HH
    Nanoscale; 2011 Oct; 3(10):4082-4. PubMed ID: 21892504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries.
    Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y
    Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage.
    Yang S; Feng X; Zhi L; Cao Q; Maier J; Müllen K
    Adv Mater; 2010 Feb; 22(7):838-42. PubMed ID: 20217794
    [No Abstract]   [Full Text] [Related]  

  • 15. Recycling bacteria for the synthesis of LiMPO4 (M = Fe, Mn) nanostructures for high-power lithium batteries.
    Zhou Y; Yang D; Zeng Y; Zhou Y; Ng WJ; Yan Q; Fong E
    Small; 2014 Oct; 10(19):3997-4002. PubMed ID: 24930375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.
    Park J; Kim GP; Nam I; Park S; Yi J
    Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion.
    Ganapathy S; Wagemaker M
    ACS Nano; 2012 Oct; 6(10):8702-12. PubMed ID: 22953788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability.
    Yan C; Xi W; Si W; Deng J; Schmidt OG
    Adv Mater; 2013 Jan; 25(4):539-44. PubMed ID: 23109218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries.
    Li N; Zhou G; Fang R; Li F; Cheng HM
    Nanoscale; 2013 Sep; 5(17):7780-4. PubMed ID: 23860518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.