These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 20886811)
1. Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. Wang B; Caffio M; Bromley C; Früchtl H; Schaub R ACS Nano; 2010 Oct; 4(10):5773-82. PubMed ID: 20886811 [TBL] [Abstract][Full Text] [Related]
4. Single and polycrystalline graphene on Rh(111) following different growth mechanisms. Liu M; Gao Y; Zhang Y; Zhang Y; Ma D; Ji Q; Gao T; Chen Y; Liu Z Small; 2013 Apr; 9(8):1360-6. PubMed ID: 23436758 [TBL] [Abstract][Full Text] [Related]
5. Interface structure and mechanics between graphene and metal substrates: a first-principles study. Xu Z; Buehler MJ J Phys Condens Matter; 2010 Dec; 22(48):485301. PubMed ID: 21406741 [TBL] [Abstract][Full Text] [Related]
6. Metal-graphene-metal sandwich contacts for enhanced interface bonding and work function control. Gong C; Hinojos D; Wang W; Nijem N; Shan B; Wallace RM; Cho K; Chabal YJ ACS Nano; 2012 Jun; 6(6):5381-7. PubMed ID: 22540140 [TBL] [Abstract][Full Text] [Related]
7. Density functional calculation of transition metal adatom adsorption on graphene. Mao Y; Yuan J; Zhong J J Phys Condens Matter; 2008 Mar; 20(11):115209. PubMed ID: 21694226 [TBL] [Abstract][Full Text] [Related]
8. Atomic-scale characterization of graphene grown on copper (100) single crystals. Rasool HI; Song EB; Mecklenburg M; Regan BC; Wang KL; Weiller BH; Gimzewski JK J Am Chem Soc; 2011 Aug; 133(32):12536-43. PubMed ID: 21732685 [TBL] [Abstract][Full Text] [Related]
9. Metallization of the C60/Rh(100) interface revealed by valence photoelectron spectroscopy and density functional theory calculations. Wade AC; Lizzit S; Petaccia L; Goldoni A; Diop D; Ustünel H; Fabris S; Baroni S J Chem Phys; 2010 Jun; 132(23):234710. PubMed ID: 20572737 [TBL] [Abstract][Full Text] [Related]
10. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy. Wong HS; Durkan C; Chandrasekhar N ACS Nano; 2009 Nov; 3(11):3455-62. PubMed ID: 19795900 [TBL] [Abstract][Full Text] [Related]
11. Unique synthesis of few-layer graphene films on carbon-doped Pt(83)Rh(17) surfaces. Gao JH; Fujita D; Xu MS; Onishi K; Miyamoto S ACS Nano; 2010 Feb; 4(2):1026-32. PubMed ID: 20104857 [TBL] [Abstract][Full Text] [Related]
12. Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. Cavallin A; Pozzo M; Africh C; Baraldi A; Vesselli E; Dri C; Comelli G; Larciprete R; Lacovig P; Lizzit S; Alfè D ACS Nano; 2012 Apr; 6(4):3034-43. PubMed ID: 22404459 [TBL] [Abstract][Full Text] [Related]
13. First principles study of the graphene/Ru(0001) interface. Jiang DE; Du MH; Dai S J Chem Phys; 2009 Feb; 130(7):074705. PubMed ID: 19239307 [TBL] [Abstract][Full Text] [Related]
14. Direct experimental evidence of metal-mediated etching of suspended graphene. Ramasse QM; Zan R; Bangert U; Boukhvalov DW; Son YW; Novoselov KS ACS Nano; 2012 May; 6(5):4063-71. PubMed ID: 22533553 [TBL] [Abstract][Full Text] [Related]
15. Small cluster models of the surface electronic structure and bonding properties of titanium carbide, vanadium carbide, and titanium nitride. Didziulis SV; Butcher KD; Perry SS Inorg Chem; 2003 Dec; 42(24):7766-81. PubMed ID: 14632492 [TBL] [Abstract][Full Text] [Related]
16. How does graphene grow? Easy access to well-ordered graphene films. Müller F; Sachdev H; Hüfner S; Pollard AJ; Perkins EW; Russell JC; Beton PH; Gsell S; Fischer M; Schreck M; Stritzker B Small; 2009 Oct; 5(20):2291-6. PubMed ID: 19565616 [TBL] [Abstract][Full Text] [Related]
17. Structure and bonding between an aryl group and metal surfaces. Jiang DE; Sumpter BG; Dai S J Am Chem Soc; 2006 May; 128(18):6030-1. PubMed ID: 16669660 [TBL] [Abstract][Full Text] [Related]
18. Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: extrinsically doped graphene. Bjelkevig C; Mi Z; Xiao J; Dowben PA; Wang L; Mei WN; Kelber JA J Phys Condens Matter; 2010 Aug; 22(30):302002. PubMed ID: 21399331 [TBL] [Abstract][Full Text] [Related]
19. Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical models. Meng L; Wu R; Zhang L; Li L; Du S; Wang Y; Gao HJ J Phys Condens Matter; 2012 Aug; 24(31):314214. PubMed ID: 22820951 [TBL] [Abstract][Full Text] [Related]
20. Origin of the moiré superlattice scale lateral force modulation of graphene on a transition metal substrate. Gao L; Chen X; Ma Y; Yan Y; Ma T; Su Y; Qiao L Nanoscale; 2018 Jun; 10(22):10576-10583. PubMed ID: 29808195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]