These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20886832)

  • 1. In-situ measurements of engineered nanoporous particle transport in saturated porous media.
    Shang J; Liu C; Wang Z; Wu H; Zhu K; Li J; Liu J
    Environ Sci Technol; 2010 Nov; 44(21):8190-5. PubMed ID: 20886832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T; Khilar KC
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloid straining within saturated heterogeneous porous media.
    Porubcan AA; Xu S
    Water Res; 2011 Feb; 45(4):1796-806. PubMed ID: 21185052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach.
    Tosco T; Sethi R
    Environ Sci Technol; 2010 Dec; 44(23):9062-8. PubMed ID: 21058641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.
    Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY
    Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring and modelling straining of Escherichia coli in saturated porous media.
    Foppen JW; van Herwerden M; Schijven J
    J Contam Hydrol; 2007 Aug; 93(1-4):236-54. PubMed ID: 17466406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.
    Li Z; Sahle-Demessie E; Hassan AA; Sorial GA
    Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of natural particles on the transport of lindane in saturated porous media: laboratory experiments and model-based analysis.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2013 Jun; 149():13-26. PubMed ID: 23528744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore fabrication in various silica-based nanoparticles by controlled etching.
    Zhao L; Zhao Y; Han Y
    Langmuir; 2010 Jul; 26(14):11784-9. PubMed ID: 20557087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of colloidal particles in natural porous media by monovalent and divalent cations.
    Grolimund D; Borkovec M
    J Contam Hydrol; 2006 Oct; 87(3-4):155-75. PubMed ID: 16844263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of filter effluent particles: experimental study of particle deposition and detachment.
    Kim J; Tobiason JE
    Water Sci Technol; 2004; 50(12):215-22. PubMed ID: 15686024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle shape on colloid retention and release in saturated porous media.
    Liu Q; Lazouskaya V; He Q; Jin Y
    J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of particle size on copper oxychloride transport through saturated sand columns.
    Paradelo M; Pérez-Rodríguez P; Arias-Estévez M; López-Periago JE
    J Agric Food Chem; 2010 Jun; 58(11):6870-5. PubMed ID: 20465213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.
    Johari WL; Diamessis PJ; Lion LW
    Water Res; 2010 Feb; 44(4):1028-37. PubMed ID: 19406449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein adsorption in porous adsorbent particles: a multiscale modeling study on inner radial humps in the concentration profiles of adsorbed protein induced by nonuniform ligand density distributions.
    Riccardi E; Wang JC; Liapis AI
    J Sep Sci; 2009 Sep; 32(18):3084-98. PubMed ID: 19630003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tortuosity of porous particles.
    Barrande M; Bouchet R; Denoyel R
    Anal Chem; 2007 Dec; 79(23):9115-21. PubMed ID: 17979254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of pore structures in nanoporous materials for advanced bionanotechnology.
    Heo K; Yoon J; Jin KS; Jin S; Ree M
    IEE Proc Nanobiotechnol; 2006 Aug; 153(4):121-8. PubMed ID: 16948496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.