These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20886836)

  • 1. Distance mapping in proteins using fluorescence spectroscopy: the tryptophan-induced quenching (TrIQ) method.
    Mansoor SE; Dewitt MA; Farrens DL
    Biochemistry; 2010 Nov; 49(45):9722-31. PubMed ID: 20886836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids.
    Goldberg JM; Speight LC; Fegley MW; Petersson EJ
    J Am Chem Soc; 2012 Apr; 134(14):6088-91. PubMed ID: 22471784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-based fluorophores for studying protein conformational changes.
    Talukder P; Chen S; Liu CT; Baldwin EA; Benkovic SJ; Hecht SM
    Bioorg Med Chem; 2014 Nov; 22(21):5924-34. PubMed ID: 25284250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix.
    Doose S; Neuweiler H; Barsch H; Sauer M
    Proc Natl Acad Sci U S A; 2007 Oct; 104(44):17400-5. PubMed ID: 17956989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red edge excitation shift spectroscopy is highly sensitive to tryptophan composition.
    Warrender AK; Pan J; Pudney C; Arcus VL; Kelton W
    J R Soc Interface; 2023 Nov; 20(208):20230337. PubMed ID: 37935360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence study of conformational flexibility of RNase S-peptide: distance-distribution, end-to-end diffusion, and anisotropy decays.
    Maliwal BP; Lakowicz JR; Kupryszewski G; Rekowski P
    Biochemistry; 1993 Nov; 32(46):12337-45. PubMed ID: 8241120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins.
    Raghuraman H; Chatterjee S; Das A
    Front Mol Biosci; 2019; 6():96. PubMed ID: 31608290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicolor protein FRET with tryptophan, selective coumarin-cysteine labeling, and genetic acridonylalanine encoding.
    Ferrie JJ; Ieda N; Haney CM; Walters CR; Sungwienwong I; Yoon J; Petersson EJ
    Chem Commun (Camb); 2017 Oct; 53(80):11072-11075. PubMed ID: 28948265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing Transient Protein-Protein Interactions by Trp-Cys Quenching and Computer Simulations.
    Heo L; Gamage K; Valdes-Garcia G; Lapidus LJ; Feig M
    J Phys Chem Lett; 2022 Nov; 13(43):10175-10182. PubMed ID: 36279257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Fluorescence Quenching by Stimulated Emission on the Spectral Properties of a Solvent-Sensitive Fluorophore.
    Gryczynski I; Kuśba J; Gryczynski Z; Malak H; Lakowicz JR
    J Phys Chem; 1996 Jan; 100(24):10135-10144. PubMed ID: 31689018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance mapping in proteins using fluorescence spectroscopy: tyrosine, like tryptophan, quenches bimane fluorescence in a distance-dependent manner.
    Jones Brunette AM; Farrens DL
    Biochemistry; 2014 Oct; 53(40):6290-301. PubMed ID: 25144569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepwise activation of a metabotropic glutamate receptor.
    Krishna Kumar K; Wang H; Habrian C; Latorraca NR; Xu J; O'Brien ES; Zhang C; Montabana E; Koehl A; Marqusee S; Isacoff EY; Kobilka BK
    Nature; 2024 May; 629(8013):951-956. PubMed ID: 38632403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions.
    Kyrychenko A; Ladokhin AS
    Chem Rec; 2024 Feb; 24(2):e202300232. PubMed ID: 37695081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gαs slow conformational transition upon GTP binding and a novel Gαs regulator.
    Ahn D; Provasi D; Duc NM; Xu J; Salas-Estrada L; Spasic A; Yun MW; Kang J; Gim D; Lee J; Du Y; Filizola M; Chung KY
    iScience; 2023 May; 26(5):106603. PubMed ID: 37128611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Illumination of a progressive allosteric mechanism mediating the glycine receptor activation.
    Shi S; Lefebvre SN; Peverini L; Cerdan AH; Milán Rodríguez P; Gielen M; Changeux JP; Cecchini M; Corringer PJ
    Nat Commun; 2023 Feb; 14(1):795. PubMed ID: 36781912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between S4 and the phosphatase domain mediates electrochemical coupling in voltage-sensing phosphatase (VSP).
    Mizutani N; Kawanabe A; Jinno Y; Narita H; Yonezawa T; Nakagawa A; Okamura Y
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2200364119. PubMed ID: 35733115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed fluorescence approaches to monitor the structural dynamics of proteins using intrinsic Trp and labeled with extrinsic fluorophores.
    Brahma R; Das A; Raghuraman H
    STAR Protoc; 2022 Mar; 3(1):101200. PubMed ID: 35252885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring protein conformational changes using fluorescent nanoantennas.
    Harroun SG; Lauzon D; Ebert MCCJC; Desrosiers A; Wang X; Vallée-Bélisle A
    Nat Methods; 2022 Jan; 19(1):71-80. PubMed ID: 34969985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting in-solution conformational changes in viral fusogens using tryptophan-induced fluorescence quenching.
    Serrão VHB; Lee JE
    STAR Protoc; 2021 Dec; 2(4):100994. PubMed ID: 34934961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking the movement of discrete gating charges in a voltage-gated potassium channel.
    Priest MF; Lee EE; Bezanilla F
    Elife; 2021 Nov; 10():. PubMed ID: 34779404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.