These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 20886961)
21. Unique chemical reactivity of a graphene nanoribbon's zigzag edge. Jiang DE; Sumpter BG; Dai S J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050 [TBL] [Abstract][Full Text] [Related]
22. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Kim WY; Kim KS Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564 [TBL] [Abstract][Full Text] [Related]
23. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons. Kumar SB; Jalil MB; Tan SG; Liang G J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192 [TBL] [Abstract][Full Text] [Related]
24. Thermally driven spin transport through a transverse-biased zigzag-edge graphene nanoribbon. Zhao Z; Zhai X; Jin G J Phys Condens Matter; 2012 Mar; 24(9):095302. PubMed ID: 22316566 [TBL] [Abstract][Full Text] [Related]
25. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter. Chakrabarty S; Wasey AHMA; Thapa R; Das GP Nanotechnology; 2018 Aug; 29(34):345203. PubMed ID: 29862988 [TBL] [Abstract][Full Text] [Related]
26. Electronic ground state of higher acenes. Jiang DE; Dai S J Phys Chem A; 2008 Jan; 112(2):332-5. PubMed ID: 18085758 [TBL] [Abstract][Full Text] [Related]
27. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube. Mandal B; Sarkar S; Sarkar P J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973 [TBL] [Abstract][Full Text] [Related]
28. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads. Zhou B; Chen X; Zhou B; Ding KH; Zhou G J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476 [TBL] [Abstract][Full Text] [Related]
29. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains. García-Fuente A; Gallego LJ; Vega A J Phys Condens Matter; 2015 Apr; 27(13):135301. PubMed ID: 25765052 [TBL] [Abstract][Full Text] [Related]
30. Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons. Xu Y; Wang BJ; Ke SH; Yang W; Alzahrani AZ J Chem Phys; 2012 Sep; 137(10):104107. PubMed ID: 22979850 [TBL] [Abstract][Full Text] [Related]
31. First principles study of magnetism in nanographenes. Jiang DE; Sumpter BG; Dai S J Chem Phys; 2007 Sep; 127(12):124703. PubMed ID: 17902927 [TBL] [Abstract][Full Text] [Related]
33. The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices. Ding Z; Jiang J; Xing H; Shu H; Huang Y; Chen X; Lu W J Comput Chem; 2011 Jun; 32(8):1753-9. PubMed ID: 21351109 [TBL] [Abstract][Full Text] [Related]
34. A gate-induced switch in zigzag graphene nanoribbons and charging effects. Cheraghchi H; Esmailzade H Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607 [TBL] [Abstract][Full Text] [Related]
35. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study. Liang Y; Wang V; Mizuseki H; Kawazoe Y J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744 [TBL] [Abstract][Full Text] [Related]
36. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Li X; Wang X; Zhang L; Lee S; Dai H Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865 [TBL] [Abstract][Full Text] [Related]
37. Electronic and transport properties of boron-doped graphene nanoribbons. Martins TB; Miwa RH; da Silva AJ; Fazzio A Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646 [TBL] [Abstract][Full Text] [Related]
38. Helical edge states and edge-state transport in strained armchair graphene nanoribbons. Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764 [TBL] [Abstract][Full Text] [Related]
39. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations. Tang S; Cao Z Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344 [TBL] [Abstract][Full Text] [Related]
40. Electronic transport properties of assembled carbon nanoribbons. Girão EC; Cruz-Silva E; Meunier V ACS Nano; 2012 Jul; 6(7):6483-91. PubMed ID: 22735039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]