These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20887012)

  • 1. Local state space temporal fluctuations: a methodology to reveal changes during a fatiguing repetitive task.
    Sanjari MA; Arshi AR; Parnianpour M; Seyed-Mohseni S
    J Biomech Eng; 2010 Oct; 132(10):101002. PubMed ID: 20887012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task.
    Bonato P; Ebenbichler GR; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1810-20. PubMed ID: 12923468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor-unit activity differs with load type during a fatiguing contraction.
    Mottram CJ; Jakobi JM; Semmler JG; Enoka RM
    J Neurophysiol; 2005 Mar; 93(3):1381-92. PubMed ID: 15483059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of motor behavior to preserve task success in the presence of muscle fatigue.
    Missenard O; Mottet D; Perrey S
    Neuroscience; 2009 Jul; 161(3):773-86. PubMed ID: 19344754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On functional motor adaptations: from the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck-shoulder region.
    Madeleine P
    Acta Physiol (Oxf); 2010 Jun; 199 Suppl 679():1-46. PubMed ID: 20579000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scapula kinematic alterations following a modified push-up plus task.
    Borstad JD; Szucs K; Navalgund A
    Hum Mov Sci; 2009 Dec; 28(6):738-51. PubMed ID: 19683822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue-induced changes of impedance and performance in target tracking.
    Selen LP; Beek PJ; van Dieën JH
    Exp Brain Res; 2007 Jul; 181(1):99-108. PubMed ID: 17342476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-linear dynamics in muscle fatigue and strength model during maximal self-perceived elbow extensors training.
    Gacesa JP; Ivancevic T; Ivancevic N; Paljic FP; Grujic N
    J Biomech; 2010 Aug; 43(12):2440-3. PubMed ID: 20494362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals.
    Côté JN; Raymond D; Mathieu PA; Feldman AG; Levin MF
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):581-90. PubMed ID: 15927734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive cost of motor reorganizations associated with muscular fatigue during a repetitive pointing task.
    Terrier R; Forestier N
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e487-93. PubMed ID: 19217312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of fatigue of elbow extensor muscles voluntarily induced and induced by electromyostimulation on multi-joint movement organization.
    Huffenus AF; Forestier N
    Neurosci Lett; 2006 Jul; 403(1-2):109-13. PubMed ID: 16707220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task differences with the same load torque alter the endurance time of submaximal fatiguing contractions in humans.
    Hunter SK; Ryan DL; Ortega JD; Enoka RM
    J Neurophysiol; 2002 Dec; 88(6):3087-96. PubMed ID: 12466432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in running pattern due to fatigue and cognitive load in orienteering.
    Millet GY; Divert C; Banizette M; Morin JB
    J Sports Sci; 2010 Jan; 28(2):153-60. PubMed ID: 20391089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in power curve shapes as an indicator of fatigue during dynamic contractions.
    Mallor F; Leon T; Gaston M; Izquierdo M
    J Biomech; 2010 May; 43(8):1627-31. PubMed ID: 20170919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net excitation of the motor unit pool varies with load type during fatiguing contractions.
    Rudroff T; Poston B; Shin IS; Bojsen-Møller J; Enoka RM
    Muscle Nerve; 2005 Jan; 31(1):78-87. PubMed ID: 15570580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue.
    Kernozek TW; Torry MR; Iwasaki M
    Am J Sports Med; 2008 Mar; 36(3):554-65. PubMed ID: 18006677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women.
    Yoon T; Schlinder Delap B; Griffith EE; Hunter SK
    Muscle Nerve; 2007 Oct; 36(4):515-24. PubMed ID: 17626289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time to task failure differs with load type when old adults perform a submaximal fatiguing contraction.
    Hunter SK; Rochette L; Critchlow A; Enoka RM
    Muscle Nerve; 2005 Jun; 31(6):730-40. PubMed ID: 15810019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.