These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 20887023)
1. Automatic generation of user material subroutines for biomechanical growth analysis. Young JM; Yao J; Ramasubramanian A; Taber LA; Perucchio R J Biomech Eng; 2010 Oct; 132(10):104505. PubMed ID: 20887023 [TBL] [Abstract][Full Text] [Related]
2. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software. Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879 [TBL] [Abstract][Full Text] [Related]
3. Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs). Nolan DR; Lally C; McGarry JP J Mech Behav Biomed Mater; 2022 Feb; 126():104940. PubMed ID: 34923365 [TBL] [Abstract][Full Text] [Related]
4. Numerical simulation data and FORTRAN code to compare the stress response of two transversely isotropic hyperelastic models in ABAQUS. Castillo-Méndez C; Ortiz A Data Brief; 2022 Apr; 41():107853. PubMed ID: 35128007 [TBL] [Abstract][Full Text] [Related]
5. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546 [TBL] [Abstract][Full Text] [Related]
6. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method. Huang H; Tang W; Yan B; Wu B; Cao D Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914 [TBL] [Abstract][Full Text] [Related]
7. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament. Huang H; Tang W; Tan Q; Yan B J Mech Behav Biomed Mater; 2017 Apr; 68():210-215. PubMed ID: 28187321 [TBL] [Abstract][Full Text] [Related]
8. On implementation of fibrous connective tissues' damage in Abaqus software. Sabik A; Witkowski W J Biomech; 2023 Aug; 157():111736. PubMed ID: 37517283 [TBL] [Abstract][Full Text] [Related]
9. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290 [TBL] [Abstract][Full Text] [Related]
10. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics. Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750 [TBL] [Abstract][Full Text] [Related]
11. Source codes and simulation data for the finite element implementation of the conventional and localizing gradient damage methods in ABAQUS. Sarkar S; Singh IV; Mishra BK; Shedbale AS; Poh LH Data Brief; 2019 Oct; 26():104533. PubMed ID: 31667295 [TBL] [Abstract][Full Text] [Related]
12. A visco-hyperelastic constitutive model and its application in bovine tongue tissue. Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y J Biomech; 2018 Apr; 71():190-198. PubMed ID: 29477259 [TBL] [Abstract][Full Text] [Related]
13. An anisotropic elastic-viscoplastic damage model for bone tissue. Schwiedrzik JJ; Zysset PK Biomech Model Mechanobiol; 2013 Apr; 12(2):201-13. PubMed ID: 22527365 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae. Li Z; Wang J; Song G; Ji C; Han X Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093 [TBL] [Abstract][Full Text] [Related]
15. A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering. Bai Y; Kaiser NJ; Coulombe KLK; Srivastava V J Mech Behav Biomed Mater; 2021 Sep; 121():104627. PubMed ID: 34130078 [TBL] [Abstract][Full Text] [Related]
16. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
17. A computationally efficient gradient-enhanced healing model for soft biological tissues. Zuo D; Zhu M; Chen D; Xue Q Biomech Model Mechanobiol; 2024 Oct; 23(5):1491-1509. PubMed ID: 38733532 [TBL] [Abstract][Full Text] [Related]
18. On the accuracy and fitting of transversely isotropic material models. Feng Y; Okamoto RJ; Genin GM; Bayly PV J Mech Behav Biomed Mater; 2016 Aug; 61():554-566. PubMed ID: 27136091 [TBL] [Abstract][Full Text] [Related]
19. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation. Limbert G J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866 [TBL] [Abstract][Full Text] [Related]
20. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation. Fan R; Sacks MS J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]