These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20887031)

  • 1. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2010 Jun; 132(6):061006. PubMed ID: 20887031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding.
    Guo H; Shah M; Spilker RL
    Proc Inst Mech Eng H; 2014 Mar; 228(3):225-36. PubMed ID: 24496915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues.
    Zimmerman BK; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34382640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Surface-to-Surface Finite Element Algorithm for Large Deformation Frictional Contact in febio.
    Zimmerman BK; Ateshian GA
    J Biomech Eng; 2018 Aug; 140(8):0810131-08101315. PubMed ID: 30003262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method.
    Guo H; Spilker RL
    J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An augmented Lagrangian finite element formulation for 3D contact of biphasic tissues.
    Guo H; Spilker RL
    Comput Methods Biomech Biomed Engin; 2014; 17(11):1206-16. PubMed ID: 23181617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute transport across a contact interface in deformable porous media.
    Ateshian GA; Maas S; Weiss JA
    J Biomech; 2012 Apr; 45(6):1023-7. PubMed ID: 22281406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An augmented Lagrangian method for sliding contact of soft tissue.
    Guo H; Nickel JC; Iwasaki LR; Spilker RL
    J Biomech Eng; 2012 Aug; 134(8):084503. PubMed ID: 22938363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation.
    Suh JK; Spilker RL
    J Biomech Eng; 1994 Feb; 116(1):1-9. PubMed ID: 8189703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation.
    Ateshian GA; Albro MB; Maas S; Weiss JA
    J Biomech Eng; 2011 Aug; 133(8):081005. PubMed ID: 21950898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivalence between short-time biphasic and incompressible elastic material responses.
    Ateshian GA; Ellis BJ; Weiss JA
    J Biomech Eng; 2007 Jun; 129(3):405-12. PubMed ID: 17536908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.
    Suh JK; Bai S
    J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.
    Yang T; Spilker RL
    J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic finite element contact analysis of the knee joint using an augmented Lagrangian method.
    Guo H; Maher SA; Spilker RL
    Med Eng Phys; 2013 Sep; 35(9):1313-20. PubMed ID: 23498852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of various contact algorithms for poroelastic tissues.
    Galbusera F; Bashkuev M; Wilke HJ; Shirazi-Adl A; Schmidt H
    Comput Methods Biomech Biomed Engin; 2014; 17(12):1323-34. PubMed ID: 23244496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the u-p finite element method to the study of articular cartilage.
    Wayne JS; Woo SL; Kwan MK
    J Biomech Eng; 1991 Nov; 113(4):397-403. PubMed ID: 1762436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2013 Nov; 135(11):111001. PubMed ID: 23775399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.