BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 20887377)

  • 1. Lipid cosorting mediated by shiga toxin induced tubulation.
    Safouane M; Berland L; Callan-Jones A; Sorre B; Römer W; Johannes L; Toombes GE; Bassereau P
    Traffic; 2010 Dec; 11(12):1519-29. PubMed ID: 20887377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Hydroxy Fatty Acid Enantiomers of Gb3 Impact Shiga Toxin Binding and Membrane Organization.
    Schütte OM; Patalag LJ; Weber LM; Ries A; Römer W; Werz DB; Steinem C
    Biophys J; 2015 Jun; 108(12):2775-8. PubMed ID: 26083916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shiga toxin B-subunit sequential binding to its natural receptor in lipid membranes.
    Pina DG; Johannes L; Castanho MA
    Biochim Biophys Acta; 2007 Mar; 1768(3):628-36. PubMed ID: 17258170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shiga toxin induces membrane reorganization and formation of long range lipid order.
    Solovyeva V; Johannes L; Simonsen AC
    Soft Matter; 2015 Jan; 11(1):186-92. PubMed ID: 25376469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation.
    Pezeshkian W; Hansen AG; Johannes L; Khandelia H; Shillcock JC; Kumar PB; Ipsen JH
    Soft Matter; 2016 Jun; 12(23):5164-71. PubMed ID: 27070906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential recognition of lipid domains by two Gb3-binding lectins.
    Schubert T; Sych T; Madl J; Xu M; Omidvar R; Patalag LJ; Ries A; Kettelhoit K; Brandel A; Mely Y; Steinem C; Werz DB; Thuenauer R; Römer W
    Sci Rep; 2020 Jun; 10(1):9752. PubMed ID: 32546842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shiga toxin induces tubular membrane invaginations for its uptake into cells.
    Römer W; Berland L; Chambon V; Gaus K; Windschiegl B; Tenza D; Aly MR; Fraisier V; Florent JC; Perrais D; Lamaze C; Raposo G; Steinem C; Sens P; Bassereau P; Johannes L
    Nature; 2007 Nov; 450(7170):670-5. PubMed ID: 18046403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells.
    Falguières T; Römer W; Amessou M; Afonso C; Wolf C; Tabet JC; Lamaze C; Johannes L
    FEBS J; 2006 Nov; 273(22):5205-18. PubMed ID: 17059464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shiga toxin binding alters lipid packing and the domain structure of Gb
    Bosse M; Sibold J; Scheidt HA; Patalag LJ; Kettelhoit K; Ries A; Werz DB; Steinem C; Huster D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15630-15638. PubMed ID: 31268447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential intracellular transport and binding of verotoxin 1 and verotoxin 2 to globotriaosylceramide-containing lipid assemblies.
    Tam P; Mahfoud R; Nutikka A; Khine AA; Binnington B; Paroutis P; Lingwood C
    J Cell Physiol; 2008 Sep; 216(3):750-63. PubMed ID: 18446787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key role of receptor density in colloid/cell specific interaction: a quantitative biomimetic study on giant vesicles.
    Lamblet M; Delord B; Johannes L; van Effenterre D; Bassereau P
    Eur Phys J E Soft Matter; 2008; 26(1-2):205-16. PubMed ID: 18480963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-glycosphingolipid interactions revealed using catch-and-release mass spectrometry.
    Zhang Y; Liu L; Daneshfar R; Kitova EN; Li C; Jia F; Cairo CW; Klassen JS
    Anal Chem; 2012 Sep; 84(18):7618-21. PubMed ID: 22920193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingolipid topology and the dynamic organization and function of membrane proteins.
    van Meer G; Hoetzl S
    FEBS Lett; 2010 May; 584(9):1800-5. PubMed ID: 19837070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosphingolipid requirements for endosome-to-Golgi transport of Shiga toxin.
    Raa H; Grimmer S; Schwudke D; Bergan J; Wälchli S; Skotland T; Shevchenko A; Sandvig K
    Traffic; 2009 Jul; 10(7):868-82. PubMed ID: 19453975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular targeting of the endoplasmic reticulum/nuclear envelope by retrograde transport may determine cell hypersensitivity to verotoxin via globotriaosyl ceramide fatty acid isoform traffic.
    Arab S; Lingwood CA
    J Cell Physiol; 1998 Dec; 177(4):646-60. PubMed ID: 10092217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular trafficking of Shiga-toxin-B-subunit-functionalized spherulites.
    Bouter A; Delord B; Dransart E; Poirier C; Johannes L; van Effenterre D
    Biol Cell; 2008 Dec; 100(12):717-25. PubMed ID: 18564063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of fluorescent sphingolipid analogs to study lipid transport along the endocytic pathway.
    Marks DL; Singh RD; Choudhury A; Wheatley CL; Pagano RE
    Methods; 2005 Jun; 36(2):186-95. PubMed ID: 15905102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins].
    Wolf C; Quinn P; Koumanov K; Chachaty C; Tenchov B
    J Soc Biol; 1999; 193(2):117-23. PubMed ID: 10451343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network.
    Bujny MV; Popoff V; Johannes L; Cullen PJ
    J Cell Sci; 2007 Jun; 120(Pt 12):2010-21. PubMed ID: 17550970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of lipid domain-specific protein sorting in giant unilamellar vesicles.
    Stöckl M; Nikolaus J; Herrmann A
    Methods Mol Biol; 2010; 606():115-26. PubMed ID: 20013394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.