BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20887734)

  • 1. Reversible adenylylation of glutamine synthetase is dynamically counterbalanced during steady-state growth of Escherichia coli.
    Okano H; Hwa T; Lenz P; Yan D
    J Mol Biol; 2010 Dec; 404(3):522-36. PubMed ID: 20887734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli.
    Jiang P; Ninfa AJ
    Biochemistry; 2011 Dec; 50(50):10929-40. PubMed ID: 22085244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state.
    Jiang P; Peliska JA; Ninfa AJ
    Biochemistry; 1998 Sep; 37(37):12802-10. PubMed ID: 9737857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.
    Jonsson A; Nordlund S; Teixeira PF
    Res Microbiol; 2009 Oct; 160(8):581-4. PubMed ID: 19761831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis of glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli.
    Jiang P; Pioszak AA; Ninfa AJ
    Biochemistry; 2007 Apr; 46(13):4117-32. PubMed ID: 17355124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenylylation and catalytic properties of Mycobacterium tuberculosis glutamine synthetase expressed in Escherichia coli versus mycobacteria.
    Mehta R; Pearson JT; Mahajan S; Nath A; Hickey MJ; Sherman DR; Atkins WM
    J Biol Chem; 2004 May; 279(21):22477-82. PubMed ID: 15037612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric interactions and bifunctionality make the response of glutamine synthetase cascade system of Escherichia coli robust and ultrasensitive.
    Mutalik VK; Shah P; Venkatesh KV
    J Biol Chem; 2003 Jul; 278(29):26327-32. PubMed ID: 12676964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein.
    Jiang P; Peliska JA; Ninfa AJ
    Biochemistry; 1998 Sep; 37(37):12782-94. PubMed ID: 9737855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49): kinetic characterization of regulation by PII, PII-UMP, glutamine, and alpha-ketoglutarate.
    Jiang P; Mayo AE; Ninfa AJ
    Biochemistry; 2007 Apr; 46(13):4133-46. PubMed ID: 17355125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity.
    Zhang Y; Pohlmann EL; Conrad MC; Roberts GP
    Mol Microbiol; 2006 Jul; 61(2):497-510. PubMed ID: 16762025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical steady state analysis indicates that induction of Escherichia coli glnALG operon can display all-or-none behavior.
    Mutalik VK; Venkatesh KV
    Biosystems; 2007; 90(1):1-19. PubMed ID: 16945478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by alpha-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro.
    Jonsson A; Teixeira PF; Nordlund S
    FEBS J; 2007 May; 274(10):2449-60. PubMed ID: 17419734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the N-terminal domain of Escherichia coli glutamine synthetase adenylyltransferase.
    Xu Y; Zhang R; Joachimiak A; Carr PD; Huber T; Vasudevan SG; Ollis DL
    Structure; 2004 May; 12(5):861-9. PubMed ID: 15130478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The domains carrying the opposing activities in adenylyltransferase are separated by a central regulatory domain.
    Clancy P; Xu Y; van Heeswijk WC; Vasudevan SG; Ollis DL
    FEBS J; 2007 Jun; 274(11):2865-77. PubMed ID: 17488285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent modification of bacterial glutamine synthetase: physiological significance.
    Kustu S; Hirschman J; Burton D; Jelesko J; Meeks JC
    Mol Gen Genet; 1984; 197(2):309-17. PubMed ID: 6151621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction.
    Jaggi R; van Heeswijk WC; Westerhoff HV; Ollis DL; Vasudevan SG
    EMBO J; 1997 Sep; 16(18):5562-71. PubMed ID: 9312015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations that alter the covalent modification of glutamine synthetase in Salmonella typhimurium.
    Bancroft S; Rhee SG; Neumann C; Kustu S
    J Bacteriol; 1978 Jun; 134(3):1046-55. PubMed ID: 26663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site.
    Xu Y; Carr PD; Vasudevan SG; Ollis DL
    J Mol Biol; 2010 Feb; 396(3):773-84. PubMed ID: 20026075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of the adenylylated tyrosine of glutamine synthetase alters its catalytic properties.
    Luo S; Kim G; Levine RL
    Biochemistry; 2005 Jul; 44(27):9441-6. PubMed ID: 15996098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.