BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20887867)

  • 1. What have we learned from Drosophila models of Parkinson's disease?
    Guo M
    Prog Brain Res; 2010; 184():3-16. PubMed ID: 20887867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease.
    Guo M
    Cold Spring Harb Perspect Med; 2012 Nov; 2(11):. PubMed ID: 23024178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
    Clark IE; Dodson MW; Jiang C; Cao JH; Huh JR; Seol JH; Yoo SJ; Hay BA; Guo M
    Nature; 2006 Jun; 441(7097):1162-6. PubMed ID: 16672981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency.
    Pirooznia SK; Yuan C; Khan MR; Karuppagounder SS; Wang L; Xiong Y; Kang SU; Lee Y; Dawson VL; Dawson TM
    Mol Neurodegener; 2020 Mar; 15(1):17. PubMed ID: 32138754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria.
    Liu S; Sawada T; Lee S; Yu W; Silverio G; Alapatt P; Millan I; Shen A; Saxton W; Kanao T; Takahashi R; Hattori N; Imai Y; Lu B
    PLoS Genet; 2012; 8(3):e1002537. PubMed ID: 22396657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring Mitochondrial Changes by Alteration of the PINK1-Parkin Signaling in Drosophila.
    Inoshita T; Shiba-Fukushima K; Meng H; Hattori N; Imai Y
    Methods Mol Biol; 2018; 1759():47-57. PubMed ID: 28324489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila.
    Imai Y; Kanao T; Sawada T; Kobayashi Y; Moriwaki Y; Ishida Y; Takeda K; Ichijo H; Lu B; Takahashi R
    PLoS Genet; 2010 Dec; 6(12):e1001229. PubMed ID: 21151955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Drosophila Pink1/parkin or mtDNA mutator models.
    Lee JJ; Andreazza S; Whitworth AJ
    Sci Rep; 2020 Feb; 10(1):2693. PubMed ID: 32060339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of dopaminergic neuronal dysfunction in genetic and toxin-induced models of Parkinson's disease in Drosophila.
    Navarro JA; Heßner S; Yenisetti SC; Bayersdorfer F; Zhang L; Voigt A; Schneuwly S; Botella JA
    J Neurochem; 2014 Nov; 131(3):369-82. PubMed ID: 25040725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo.
    Yun J; Cao JH; Dodson MW; Clark IE; Kapahi P; Chowdhury RB; Guo M
    J Neurosci; 2008 Dec; 28(53):14500-10. PubMed ID: 19118185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes.
    Julienne H; Buhl E; Leslie DS; Hodge JJL
    Neurobiol Dis; 2017 Aug; 104():15-23. PubMed ID: 28435104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction in genetic animal models of Parkinson's disease.
    Trancikova A; Tsika E; Moore DJ
    Antioxid Redox Signal; 2012 May; 16(9):896-919. PubMed ID: 21848447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease.
    Dodson MW; Guo M
    Curr Opin Neurobiol; 2007 Jun; 17(3):331-7. PubMed ID: 17499497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin.
    Whitworth AJ; Lee JR; Ho VM; Flick R; Chowdhury R; McQuibban GA
    Dis Model Mech; 2008; 1(2-3):168-74; discussion 173. PubMed ID: 19048081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease.
    Costa AC; Loh SH; Martins LM
    Cell Death Dis; 2013 Jan; 4(1):e467. PubMed ID: 23328674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling.
    Yang Y; Gehrke S; Haque ME; Imai Y; Kosek J; Yang L; Beal MF; Nishimura I; Wakamatsu K; Ito S; Takahashi R; Lu B
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13670-5. PubMed ID: 16155123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mask loss-of-function rescues mitochondrial impairment and muscle degeneration of Drosophila pink1 and parkin mutants.
    Zhu M; Li X; Tian X; Wu C
    Hum Mol Genet; 2015 Jun; 24(11):3272-85. PubMed ID: 25743185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitophagy and Parkinson's disease: be eaten to stay healthy.
    de Vries RL; Przedborski S
    Mol Cell Neurosci; 2013 Jul; 55():37-43. PubMed ID: 22926193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster.
    Liu S; Lu B
    PLoS Genet; 2010 Dec; 6(12):e1001237. PubMed ID: 21151574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.