These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 20888634)
1. Enhanced gene transfection and serum stability of polyplexes by PDMAEMA-polysulfobetaine diblock copolymers. Dai F; Liu W Biomaterials; 2011 Jan; 32(2):628-38. PubMed ID: 20888634 [TBL] [Abstract][Full Text] [Related]
2. Stable gene transfection mediated by polysulfobetaine/PDMAEMA diblock copolymer in salted medium. Dai F; Liu Y; Wang W; Liu W J Biomater Sci Polym Ed; 2013; 24(3):330-43. PubMed ID: 23565651 [TBL] [Abstract][Full Text] [Related]
3. Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene transfection. Zhu C; Zheng M; Meng F; Mickler FM; Ruthardt N; Zhu X; Zhong Z Biomacromolecules; 2012 Mar; 13(3):769-78. PubMed ID: 22277017 [TBL] [Abstract][Full Text] [Related]
4. Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Jiang X; Lok MC; Hennink WE Bioconjug Chem; 2007; 18(6):2077-84. PubMed ID: 17927133 [TBL] [Abstract][Full Text] [Related]
5. Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polymer-DNA complexes. Sharma R; Lee JS; Bettencourt RC; Xiao C; Konieczny SF; Won YY Biomacromolecules; 2008 Nov; 9(11):3294-307. PubMed ID: 18942877 [TBL] [Abstract][Full Text] [Related]
6. Polycation-b-polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging. Cheng L; Li Y; Zhai X; Xu B; Cao Z; Liu W ACS Appl Mater Interfaces; 2014 Nov; 6(22):20487-97. PubMed ID: 25285670 [TBL] [Abstract][Full Text] [Related]
7. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Lin S; Du F; Wang Y; Ji S; Liang D; Yu L; Li Z Biomacromolecules; 2008 Jan; 9(1):109-15. PubMed ID: 18088093 [TBL] [Abstract][Full Text] [Related]
8. Assessment of new biocompatible poly(N-(morpholino)ethyl methacrylate)-based copolymers by transfection of immortalized keratinocytes. Van Overstraeten-Schlögel N; Shim YH; Tevel V; Piel G; Piette J; Dubois P; Raes M Drug Deliv; 2012 Feb; 19(2):112-22. PubMed ID: 22239537 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of poly[(R)-3-hydroxybutyrate] into cationic copolymers based on poly(2-(dimethylamino)ethyl methacrylate) to improve gene delivery. Loh XJ; Ong SJ; Tung YT; Choo HT Macromol Biosci; 2013 Aug; 13(8):1092-9. PubMed ID: 23703863 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylcholine-polycation diblock copolymers as synthetic vectors for gene delivery. Lam JK; Ma Y; Armes SP; Lewis AL; Baldwin T; Stolnik S J Control Release; 2004 Nov; 100(2):293-312. PubMed ID: 15544876 [TBL] [Abstract][Full Text] [Related]
12. Versatile functionalization of gene vectors via different types of zwitterionic betaine species for serum-tolerant transfection. Xiu KM; Zhao NN; Yang WT; Xu FJ Acta Biomater; 2013 Jul; 9(7):7439-48. PubMed ID: 23571001 [TBL] [Abstract][Full Text] [Related]
13. Redox-cleavable star cationic PDMAEMA by arm-first approach of ATRP as a nonviral vector for gene delivery. Dai F; Sun P; Liu Y; Liu W Biomaterials; 2010 Jan; 31(3):559-69. PubMed ID: 19796806 [TBL] [Abstract][Full Text] [Related]
14. Characterization of tailor-made copolymers of oligo(ethylene glycol) methyl ether methacrylate and N,N-dimethylaminoethyl methacrylate as nonviral gene transfer agents: influence of macromolecular structure on gene vector particle properties and transfection efficiency. Uzgün S; Akdemir O; Hasenpusch G; Maucksch C; Golas MM; Sander B; Stark H; Imker R; Lutz JF; Rudolph C Biomacromolecules; 2010 Jan; 11(1):39-50. PubMed ID: 19957957 [TBL] [Abstract][Full Text] [Related]
15. Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery. Liu X; Yin H; Zhang Z; Diao B; Li J Colloids Surf B Biointerfaces; 2015 Jan; 125():230-7. PubMed ID: 25506805 [TBL] [Abstract][Full Text] [Related]
16. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Qian Y; Zha Y; Feng B; Pang Z; Zhang B; Sun X; Ren J; Zhang C; Shao X; Zhang Q; Jiang X Biomaterials; 2013 Mar; 34(8):2117-29. PubMed ID: 23245924 [TBL] [Abstract][Full Text] [Related]
17. Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino)ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Xu FJ; Li H; Li J; Zhang Z; Kang ET; Neoh KG Biomaterials; 2008 Jul; 29(20):3023-33. PubMed ID: 18423581 [TBL] [Abstract][Full Text] [Related]
18. The use of PEGylated poly [2-(N,N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses. Qiao Y; Huang Y; Qiu C; Yue X; Deng L; Wan Y; Xing J; Zhang C; Yuan S; Dong A; Xu J Biomaterials; 2010 Jan; 31(1):115-23. PubMed ID: 19781770 [TBL] [Abstract][Full Text] [Related]
19. Application of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes for gene transfer into human ovarian carcinoma cells. Verbaan FJ; Klein Klouwenberg P; van Steenis JH; Snel CJ; Boerman O; Hennink WE; Storm G Int J Pharm; 2005 Nov; 304(1-2):185-92. PubMed ID: 16129577 [TBL] [Abstract][Full Text] [Related]
20. Phosphonium-containing diblock copolymers for enhanced colloidal stability and efficient nucleic acid delivery. Hemp ST; Smith AE; Bryson JM; Allen MH; Long TE Biomacromolecules; 2012 Aug; 13(8):2439-45. PubMed ID: 22713112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]