BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20888691)

  • 41. Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column.
    Malkoc E; Nuhoglu Y
    J Hazard Mater; 2006 Jul; 135(1-3):328-36. PubMed ID: 16387431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers.
    Riahi K; Thayer BB; Mammou AB; Ammar AB; Jaafoura MH
    J Hazard Mater; 2009 Oct; 170(2-3):511-9. PubMed ID: 19497666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite.
    Ozcan AS; Gök O; Ozcan A
    J Hazard Mater; 2009 Jan; 161(1):499-509. PubMed ID: 18508194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of mercury from water by multi-walled carbon nanotubes.
    Tawabini B; Al-Khaldi S; Atieh M; Khaled M
    Water Sci Technol; 2010; 61(3):591-8. PubMed ID: 20150694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies on defluoridation of water by tamarind seed, an unconventional biosorbent.
    Murugan M; Subramanian E
    J Water Health; 2006 Dec; 4(4):453-61. PubMed ID: 17176816
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Grape bagasse as an alternative natural adsorbent of cadmium and lead for effluent treatment.
    Farinella NV; Matos GD; Lehmann EL; Arruda MA
    J Hazard Mater; 2008 Jun; 154(1-3):1007-12. PubMed ID: 18079055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent.
    Anandkumar J; Mandal B
    J Hazard Mater; 2009 Sep; 168(2-3):633-40. PubMed ID: 19339109
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste.
    Martínez M; Miralles N; Hidalgo S; Fiol N; Villaescusa I; Poch J
    J Hazard Mater; 2006 May; 133(1-3):203-11. PubMed ID: 16310940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enriched fluoride sorption using alumina/chitosan composite.
    Viswanathan N; Meenakshi S
    J Hazard Mater; 2010 Jun; 178(1-3):226-32. PubMed ID: 20144851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin.
    Zhan XM; Zhao X
    Water Res; 2003 Sep; 37(16):3905-12. PubMed ID: 12909109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of lead from aqueous solution with native and chemically modified corncobs.
    Tan G; Yuan H; Liu Y; Xiao D
    J Hazard Mater; 2010 Feb; 174(1-3):740-5. PubMed ID: 19864061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L.
    Jayaram K; Murthy IY; Lalhruaitluanga H; Prasad MN
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):248-54. PubMed ID: 19321318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of lead from aqueous solutions with a treated spent bleaching earth.
    Mana M; Ouali MS; Lindheimer M; Menorval LC
    J Hazard Mater; 2008 Nov; 159(2-3):358-64. PubMed ID: 18395334
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents.
    Boujelben N; Bouzid J; Elouear Z; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Feb; 151(1):103-10. PubMed ID: 17611022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach.
    Garg UK; Kaur MP; Garg VK; Sud D
    Bioresour Technol; 2008 Mar; 99(5):1325-31. PubMed ID: 17383868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Biosorption of lead ions on dried waste beer yeast and the analysis by FTIR].
    Dai QW; Dong FQ; Zhang W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1788-92. PubMed ID: 19798941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study.
    Dubey SP; Gopal K
    J Hazard Mater; 2007 Jul; 145(3):465-70. PubMed ID: 17175098
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste.
    Jain M; Garg VK; Kadirvelu K
    J Hazard Mater; 2009 Feb; 162(1):365-72. PubMed ID: 18579297
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sorption of lead from aqueous solutions by tea wastes.
    Liu N; Lin D; Lu H; Xu Y; Wu M; Luo J; Xing B
    J Environ Qual; 2009; 38(6):2260-6. PubMed ID: 19875782
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste.
    Liao D; Zheng W; Li X; Yang Q; Yue X; Guo L; Zeng G
    J Hazard Mater; 2010 May; 177(1-3):126-30. PubMed ID: 20042291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.