BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20888691)

  • 61. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies.
    Kadirvelu K; Karthika C; Vennilamani N; Pattabhi S
    Chemosphere; 2005 Aug; 60(8):1009-17. PubMed ID: 15993147
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Treatment of chrome plating wastewater (Cr+6) using activated alumina.
    Sarkar S; Gupta A
    Indian J Environ Health; 2003 Jan; 45(1):73-82. PubMed ID: 14723286
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.
    Zhang G; Liu H; Liu R; Qu J
    J Colloid Interface Sci; 2009 Jul; 335(2):168-74. PubMed ID: 19406416
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes.
    Sun Y; Yang S; Sheng G; Guo Z; Wang X
    J Environ Radioact; 2012 Feb; 105():40-7. PubMed ID: 22230020
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption.
    Santhi T; Manonmani S; Smitha T
    J Hazard Mater; 2010 Jul; 179(1-3):178-86. PubMed ID: 20303654
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamics of Pb(II) adsorption on nanostructured γ-alumina: calculations of axial dispersion and overall mass transfer coefficients in the fixed-bed column.
    Saadi Z; Saadi R; Fazaeli R
    J Water Health; 2015 Sep; 13(3):790-800. PubMed ID: 26322764
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions.
    Hameed BH; Krishni RR; Sata SA
    J Hazard Mater; 2009 Feb; 162(1):305-11. PubMed ID: 18573607
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution.
    Nasiruddin Khan M; Farooq Wahab M
    J Hazard Mater; 2007 Mar; 141(1):237-44. PubMed ID: 16911857
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil.
    Quan C; Li A; Gao N
    J Hazard Mater; 2010 Jul; 179(1-3):911-7. PubMed ID: 20400225
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives.
    Bourlinos AB; Georgakilas V; Tzitzios V; Boukos N; Herrera R; Giannelis EP
    Small; 2006 Oct; 2(10):1188-91. PubMed ID: 17193588
    [No Abstract]   [Full Text] [Related]  

  • 72. Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes.
    Shao D; Sheng G; Chen C; Wang X; Nagatsu M
    Chemosphere; 2010 Apr; 79(7):679-85. PubMed ID: 20350742
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water.
    Liu H; Deng S; Li Z; Yu G; Huang J
    J Hazard Mater; 2010 Jul; 179(1-3):424-30. PubMed ID: 20347522
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes.
    Sheng GD; Shao DD; Ren XM; Wang XQ; Li JX; Chen YX; Wang XK
    J Hazard Mater; 2010 Jun; 178(1-3):505-16. PubMed ID: 20153109
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Removal of phenolic compounds from aqueous solutions by adsorption onto manganese nodule leached residue.
    Parida KM; Pradhan AC
    J Hazard Mater; 2010 Jan; 173(1-3):758-64. PubMed ID: 19836880
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran.
    Sulak MT; Demirbas E; Kobya M
    Bioresour Technol; 2007 Sep; 98(13):2590-8. PubMed ID: 17084078
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal.
    Mor S; Ravindra K; Bishnoi NR
    Bioresour Technol; 2007 Mar; 98(4):954-7. PubMed ID: 16725320
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides.
    Lv L; He J; Wei M; Evans DG; Duan X
    J Hazard Mater; 2006 May; 133(1-3):119-28. PubMed ID: 16343753
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carboxymethylated-bacterial cellulose for copper and lead ion removal.
    Chen S; Zou Y; Yan Z; Shen W; Shi S; Zhang X; Wang H
    J Hazard Mater; 2009 Jan; 161(2-3):1355-9. PubMed ID: 18538922
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions.
    Ozsoy HD; Kumbur H; Saha B; van Leeuwen JH
    Bioresour Technol; 2008 Jul; 99(11):4943-8. PubMed ID: 17964150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.