These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20888691)

  • 81. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles.
    Qu S; Huang F; Yu S; Chen G; Kong J
    J Hazard Mater; 2008 Dec; 160(2-3):643-7. PubMed ID: 18430510
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Adsorption of As(III) from aqueous solutions by iron oxide-coated sand.
    Gupta VK; Saini VK; Jain N
    J Colloid Interface Sci; 2005 Aug; 288(1):55-60. PubMed ID: 15927561
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Removal of lead from aqueous solutions by condensed tannin gel adsorbent.
    Zhan XM; Zhao X; Miyazaki A; Nakano Y
    J Environ Sci (China); 2003 Jan; 15(1):102-6. PubMed ID: 12602612
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Removal and recovery of Zn2+ and Pb2+ by imine-functionalized magnetic nanoparticles with tunable selectivity.
    Zeng G; Pang Y; Zeng Z; Tang L; Zhang Y; Liu Y; Zhang J; Lei X; Li Z; Xiong Y; Xie G
    Langmuir; 2012 Jan; 28(1):468-73. PubMed ID: 22126706
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Fabrication of β-cyclodextrin modified mesostructured silica coated multi-walled carbon nanotubes composites and application for paraben removal.
    Ding C; He J; Xu M; Wang C
    Water Sci Technol; 2018 Oct; 78(5-6):1001-1009. PubMed ID: 30339525
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Large pore diameter MCM-41 and its application for lead removal from aqueous media.
    Idris SA; Davidson CM; McManamon C; Morris MA; Anderson P; Gibson LT
    J Hazard Mater; 2011 Jan; 185(2-3):898-904. PubMed ID: 21035253
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Hydrocarbon decomposition in alumina membrane: an effective way to produce carbon nanotubes bundles.
    Ciambelli P; Sannino D; Sarno M; Fonseca A; Nagy JB
    J Nanosci Nanotechnol; 2004 Sep; 4(7):779-87. PubMed ID: 15570960
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Adsorption of DDT and PCB by Nanomaterials from Residual Soil.
    Taha MR; Mobasser S
    PLoS One; 2015; 10(12):e0144071. PubMed ID: 26659225
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead.
    Chen GC; Shan XQ; Pei ZG; Wang H; Zheng LR; Zhang J; Xie YN
    J Hazard Mater; 2011 Apr; 188(1-3):156-63. PubMed ID: 21324587
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity.
    Vermisoglou EC; Pilatos G; Romanos GE; Devlin E; Kanellopoulos NK; Karanikolos GN
    Nanotechnology; 2011 Sep; 22(35):355602. PubMed ID: 21817779
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study.
    Chen S; Ma Y; Chen L; Wang L; Guo H
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns.
    Tian Y; Gao B; Morales VL; Chen H; Wang Y; Li H
    Chemosphere; 2013 Mar; 90(10):2597-605. PubMed ID: 23232047
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process.
    Schlagenhauf L; Chu BT; Buha J; Nüesch F; Wang J
    Environ Sci Technol; 2012 Jul; 46(13):7366-72. PubMed ID: 22662874
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Removal of Cs
    Cabranes M; Leyva AG; Babay PA
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21982-21992. PubMed ID: 29797199
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Fe-sapphire and C-Fe-sapphire interactions and their effect on the growth of single-walled carbon nanotubes by chemical vapor deposition.
    Yudasaka M; Kasuya Y; Jing F; Zhang M; Iijima S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):428-32. PubMed ID: 15296233
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Biocatalyst-adsorbant systems: a viable alternative to proteolytic processes in solution.
    Furtado S; Cantera AM
    Prep Biochem Biotechnol; 2002 Aug; 32(3):217-37. PubMed ID: 12375811
    [TBL] [Abstract][Full Text] [Related]  

  • 97. [Immobilization of heavy metal Pb2+ with geopolymer].
    Jin MT; Jin ZF; Huang CJ
    Huan Jing Ke Xue; 2011 May; 32(5):1447-53. PubMed ID: 21780604
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Use of granular slag columns for lead removal.
    Dimitrova SV
    Water Res; 2002 Sep; 36(16):4001-8. PubMed ID: 12405409
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Carbon/metal nanotubes with tailored order and configuration by direct carbonization of inverse block copolymer micelles inside nanoporous alumina.
    Jang YJ; Jang YH; Steinhart M; Kim DH
    Chem Commun (Camb); 2012 Jan; 48(4):507-9. PubMed ID: 22057360
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Direct extraction of lead (II) from untreated human blood serum using restricted access carbon nanotubes and its determination by atomic absorption spectrometry.
    Barbosa VM; Barbosa AF; Bettini J; Luccas PO; Figueiredo EC
    Talanta; 2016 Jan; 147():478-84. PubMed ID: 26592636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.