These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 20888821)
1. Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research. Jenks BG; Galas L; Kuribara M; Desrues L; Kidane AH; Vaudry H; Scheenen WJ; Roubos EW; Tonon MC Gen Comp Endocrinol; 2011 Jan; 170(1):57-67. PubMed ID: 20888821 [TBL] [Abstract][Full Text] [Related]
2. BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression. Kuribara M; Eijsink VD; Roubos EW; Jenks BG; Scheenen WJ Gen Comp Endocrinol; 2010 Nov; 169(2):123-9. PubMed ID: 20736010 [TBL] [Abstract][Full Text] [Related]
3. The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis. Jenks BG; Kuribara M; Kidane AH; Kramer BM; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2012 Jul; 177(3):315-21. PubMed ID: 22248443 [TBL] [Abstract][Full Text] [Related]
4. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Jenks BG; Kidane AH; Scheenen WJ; Roubos EW Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778 [TBL] [Abstract][Full Text] [Related]
5. Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis. Kidane AH; van Dooren SH; Roubos EW; Jenks BG Gen Comp Endocrinol; 2007; 153(1-3):176-81. PubMed ID: 17502112 [TBL] [Abstract][Full Text] [Related]
6. Brain-derived neurotrophic factor stimulates growth of pituitary melanotrope cells in an autocrine way. Kuribara M; Hess MW; Cazorla M; Roubos EW; Scheenen WJ; Jenks BG Gen Comp Endocrinol; 2011 Jan; 170(1):156-61. PubMed ID: 20888824 [TBL] [Abstract][Full Text] [Related]
8. A developmental analysis of periodic albinism in the amphibian Xenopus laevis. Eagleson GW; van der Heijden RA; Roubos EW; Jenks BG Gen Comp Endocrinol; 2010 Sep; 168(2):302-6. PubMed ID: 20178802 [TBL] [Abstract][Full Text] [Related]
9. Actions of PACAP and VIP on melanotrope cells of Xenopus laevis. Kidane AH; Cruijsen PM; Ortiz-Bazan MA; Vaudry H; Leprince J; Kuijpers-Kwant FJ; Roubos EW; Jenks BG Peptides; 2007 Sep; 28(9):1790-6. PubMed ID: 17482316 [TBL] [Abstract][Full Text] [Related]
10. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis. Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690 [TBL] [Abstract][Full Text] [Related]
11. Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells. Kuribara M; Kidane AH; Vos GA; de Gouw D; Roubos EW; Scheenen WJ; Jenks BG J Neuroendocrinol; 2011 Mar; 23(3):261-8. PubMed ID: 21129045 [TBL] [Abstract][Full Text] [Related]
12. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis. Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930 [TBL] [Abstract][Full Text] [Related]
13. Physiological manipulation of cellular activity tunes protein and ultrastructural profiles in a neuroendocrine cell. van Herp F; van Bakel NH; Coenen AJ; Sergeant K; Devreese B; Martens GJ J Endocrinol; 2008 Sep; 198(3):607-16. PubMed ID: 18577564 [TBL] [Abstract][Full Text] [Related]
14. Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis. Wang LC; Meijer HK; Humbel BM; Jenks BG; Roubos EW J Neuroendocrinol; 2004 Jan; 16(1):19-25. PubMed ID: 14962071 [TBL] [Abstract][Full Text] [Related]
15. Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis. Scheenen WJ; Jansen EJ; Roubos EW; Martens GJ Ann N Y Acad Sci; 2009 Apr; 1163():296-307. PubMed ID: 19456351 [TBL] [Abstract][Full Text] [Related]
16. Catecholaminergic control of alpha-melanocyte-stimulating hormone (alpha MSH) release by frog neurointermediate lobe in vitro: evidence for direct stimulation of alpha MSH release by thyrotropin-releasing hormone. Tonon MC; Leroux P; Stoeckel ME; Jegou S; Pelletier G; Vaudry H Endocrinology; 1983 Jan; 112(1):133-41. PubMed ID: 6401174 [TBL] [Abstract][Full Text] [Related]
17. Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis. de Rijk EP; Terlou M; Cruijsen PM; Jenks BG; Roubos EW Cytometry; 1992; 13(8):863-71. PubMed ID: 1333944 [TBL] [Abstract][Full Text] [Related]
18. A proteome map of the pituitary melanotrope cell activated by black-background adaptation of Xenopus laevis. Devreese B; Sergeant K; Van Bakel NH; Debyser G; Van Beeumen J; Martens GJ; Van Herp F Proteomics; 2010 Feb; 10(3):574-80. PubMed ID: 20029839 [TBL] [Abstract][Full Text] [Related]
19. RT-PCR analysis of the expression of POMC and its processing enzyme PC1 in amphibian melanotropes. Peinado JR; Cruz-García D; Vázquez-Martínez R; Anouar Y; Tonon MC; Vaudry H; Gracia-Navarro F; Castaño JP; Malagón MM Gen Comp Endocrinol; 2006 Jun; 147(2):222-30. PubMed ID: 16480985 [TBL] [Abstract][Full Text] [Related]
20. Central control of melanotrope cells of Xenopus laevis. Tuinhof R; González A; Smeets WJ; Scheenen WJ; Roubos EW Eur J Morphol; 1994 Aug; 32(2-4):307-10. PubMed ID: 7803185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]