These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 20888821)
21. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis. de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808 [TBL] [Abstract][Full Text] [Related]
22. Two frog melanotrope cell subpopulations exhibiting distinct biochemical and physiological patterns in basal conditions and under thyrotropin-releasing hormone stimulation. Gonzalez de Aguilar JL; Malagon MM; Vazquez-Martinez RM; Lihrmann I; Tonon MC; Vaudry H; Gracia-Navarro F Endocrinology; 1997 Mar; 138(3):970-7. PubMed ID: 9048597 [TBL] [Abstract][Full Text] [Related]
23. Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor. Van Strien FJ; Roubos EW; Vaudry H; Jenks BG Endocrinology; 1996 Oct; 137(10):4298-307. PubMed ID: 8828489 [TBL] [Abstract][Full Text] [Related]
24. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Zhang H; Langeslag M; Breukels V; Jenks BG; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2008 Mar; 156(1):104-12. PubMed ID: 18206885 [TBL] [Abstract][Full Text] [Related]
25. In vitro study of frog (Rana ridibunda Pallas) neurointermediate lobe secretion by use of a simplified perifusion system. II. Lack of action of thyroxine on TRH-induced alpha-MSH secretion. Leroux P; Tonon MC; Saulot P; Jegou S; Vaudry H Gen Comp Endocrinol; 1983 Sep; 51(3):323-8. PubMed ID: 6414878 [TBL] [Abstract][Full Text] [Related]
26. Brain-derived neurotrophic factor in the hypothalamo-hypophyseal system of Xenopus laevis. Wang L; Calle M; Roubos EW Ann N Y Acad Sci; 2005 Apr; 1040():512-4. PubMed ID: 15891104 [TBL] [Abstract][Full Text] [Related]
27. Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity. Roubos EW; Scheenen WJ; Jenks BG Ann N Y Acad Sci; 2005 Apr; 1040():172-83. PubMed ID: 15891022 [TBL] [Abstract][Full Text] [Related]
28. Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis. Calle M; Corstens GJ; Wang L; Kozicz T; Denver RJ; Barendregt HP; Roubos EW Brain Res; 2005 Apr; 1040(1-2):14-28. PubMed ID: 15804422 [TBL] [Abstract][Full Text] [Related]
30. In vitro study of frog (Rana ridibunda Pallas) neurointermediate lobe secretion by use of a simplified perifusion system. III. Effect of neuropeptides on alpha-MSH secretion. Tonon MC; Leroux P; Oliver C; Jegou S; Leboulenger F; Delarue C; Coy DH; Vaudry H Gen Comp Endocrinol; 1983 Nov; 52(2):173-81. PubMed ID: 6140203 [TBL] [Abstract][Full Text] [Related]
32. Mutagenesis studies in transgenic Xenopus intermediate pituitary cells reveal structural elements necessary for correct prion protein biosynthesis. van Rosmalen JW; Martens GJ Dev Neurobiol; 2007 May; 67(6):715-27. PubMed ID: 17443819 [TBL] [Abstract][Full Text] [Related]
33. In vitro study of frog (Rana ridibunda Pallas) neurointermediate lobe secretion by use of a simplified perifusion system. I. Effect of TRH analogs upon alpha-MSH release. Leroux P; Tonon MC; Jegou S; Leboulenger F; Delarue C; Perroteau I; Netchitailo P; Kupryszewski G; Vaudry H Gen Comp Endocrinol; 1982 Jan; 46(1):13-23. PubMed ID: 6800876 [No Abstract] [Full Text] [Related]
35. Gene expression profiling of pituitary melanotrope cells during their physiological activation. Kuribara M; van Bakel NH; Ramekers D; de Gouw D; Neijts R; Roubos EW; Scheenen WJ; Martens GJ; Jenks BG J Cell Physiol; 2012 Jan; 227(1):288-96. PubMed ID: 21412779 [TBL] [Abstract][Full Text] [Related]
36. Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum. Eagleson GW; Selten MM; Roubos EW; Jenks BG Gen Comp Endocrinol; 2012 Aug; 178(1):116-22. PubMed ID: 22569169 [TBL] [Abstract][Full Text] [Related]
37. Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides. Verburg-Van Kemenade BM; Jenks BG; Cruijsen PM; Dings A; Tonon MC; Vaudry H Peptides; 1987; 8(6):1093-100. PubMed ID: 2831518 [TBL] [Abstract][Full Text] [Related]
38. Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis. van Wijk DC; Meijer KH; Roubos EW Gen Comp Endocrinol; 2010 Sep; 168(2):293-301. PubMed ID: 20067800 [TBL] [Abstract][Full Text] [Related]
39. Multiple control and dynamic response of the Xenopus melanotrope cell. Kolk SM; Kramer BM; Cornelisse LN; Scheenen WJ; Jenks BG; Roubos EW Comp Biochem Physiol B Biochem Mol Biol; 2002 May; 132(1):257-68. PubMed ID: 11997227 [TBL] [Abstract][Full Text] [Related]
40. Particular processing of pro-opiomelanocortin in Xenopus laevis intermediate pituitary. Sequencing of alpha- and beta-melanocyte-stimulating hormones. Rouillé Y; Michel G; Chauvet MT; Chauvet J; Acher R FEBS Lett; 1989 Mar; 245(1-2):215-8. PubMed ID: 2564347 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]