BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 20888834)

  • 1. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.
    Rojas A; Liwo A; Browne D; Scheraga HA
    J Mol Biol; 2010 Dec; 404(3):537-52. PubMed ID: 20888834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
    Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG
    ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation.
    Xie H; Rojas A; Maisuradze GG; Khelashvili G
    ACS Chem Neurosci; 2022 Apr; 13(7):987-1001. PubMed ID: 35258946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach.
    Rosenman DJ; Connors CR; Chen W; Wang C; García AE
    J Mol Biol; 2013 Sep; 425(18):3338-59. PubMed ID: 23811057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations.
    Sasmal S; Schwierz N; Head-Gordon T
    J Phys Chem B; 2016 Dec; 120(47):12088-12097. PubMed ID: 27806205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replica exchange simulations of the thermodynamics of Abeta fibril growth.
    Takeda T; Klimov DK
    Biophys J; 2009 Jan; 96(2):442-52. PubMed ID: 19167295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing energetics of Abeta fibril elongation by molecular dynamics simulations.
    Takeda T; Klimov DK
    Biophys J; 2009 Jun; 96(11):4428-37. PubMed ID: 19486667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational backbone mutagenesis of Abeta peptides: probing the role of backbone hydrogen bonds in aggregation.
    Takeda T; Klimov DK
    J Phys Chem B; 2010 Apr; 114(14):4755-62. PubMed ID: 20302321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations to investigate the aggregation behaviors of the Abeta(17-42) oligomers.
    Zhao JH; Liu HL; Liu YF; Lin HY; Fang HW; Ho Y; Tsai WB
    J Biomol Struct Dyn; 2009 Feb; 26(4):481-90. PubMed ID: 19108587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micelle-like architecture of the monomer ensemble of Alzheimer's amyloid-β peptide in aqueous solution and its implications for Aβ aggregation.
    Vitalis A; Caflisch A
    J Mol Biol; 2010 Oct; 403(1):148-165. PubMed ID: 20709081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the critical nucleus and mechanism of fibril elongation of the Alzheimer's Abeta(1-40) peptide.
    Fawzi NL; Okabe Y; Yap EH; Head-Gordon T
    J Mol Biol; 2007 Jan; 365(2):535-50. PubMed ID: 17070840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of Abeta(16-22) amyloid fibrils probed by molecular dynamics.
    Takeda T; Klimov DK
    J Mol Biol; 2007 May; 368(4):1202-13. PubMed ID: 17382346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Mechanisms of Alzheimer's Biomarker FDDNP Binding to Aβ Amyloid Fibril.
    Parikh ND; Klimov DK
    J Phys Chem B; 2015 Sep; 119(35):11568-80. PubMed ID: 26237080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An α-helix mimetic oligopyridylamide, ADH-31, modulates Aβ
    Kaur A; Goyal D; Goyal B
    Phys Chem Chem Phys; 2020 Dec; 22(48):28055-28073. PubMed ID: 33289734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation.
    Reddy G; Straub JE; Thirumalai D
    J Phys Chem B; 2009 Jan; 113(4):1162-72. PubMed ID: 19125574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disordered versus fibril-like amyloid β (25-35) dimers in water: structure and thermodynamics.
    Kittner M; Knecht V
    J Phys Chem B; 2010 Nov; 114(46):15288-95. PubMed ID: 20964446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42.
    Andarzi Gargari S; Barzegar A; Tarinejad A
    PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid β Fibril Elongation by Monomers Involves Disorder at the Tip.
    Bacci M; Vymětal J; Mihajlovic M; Caflisch A; Vitalis A
    J Chem Theory Comput; 2017 Oct; 13(10):5117-5130. PubMed ID: 28870064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.