These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2088888)

  • 1. Isolation of human skeletal muscle sarcolemmal vesicles for the investigation of glutamine transport.
    Ahmed A; Gibson JN; Taylor PM; Rennie MJ
    Biochem Soc Trans; 1990 Dec; 18(6):1238-9. PubMed ID: 2088888
    [No Abstract]   [Full Text] [Related]  

  • 2. Characteristics of glutamine transport in sarcolemmal vesicles from rat skeletal muscle.
    Ahmed A; Taylor PM; Rennie MJ
    Am J Physiol; 1990 Aug; 259(2 Pt 1):E284-91. PubMed ID: 2116727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamine transport in human skeletal muscle.
    Ahmed A; Maxwell DL; Taylor PM; Rennie MJ
    Am J Physiol; 1993 Jun; 264(6 Pt 1):E993-1000. PubMed ID: 8333525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of corticosteroid on the transport and metabolism of glutamine in rat skeletal muscle.
    Hundal HS; Babij P; Taylor PM; Watt PW; Rennie MJ
    Biochim Biophys Acta; 1991 May; 1092(3):376-83. PubMed ID: 1675589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle sarcolemma in malignant hyperthermia: evidence for a defect in calcium regulation.
    Mickelson JR; Ross JA; Hyslop RJ; Gallant EM; Louis CF
    Biochim Biophys Acta; 1987 Mar; 897(3):364-76. PubMed ID: 3028485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-specificity of glutamine transporters in membrane vesicles from rat liver and skeletal muscle investigated using amino acid analogues.
    Low SY; Taylor PM; Ahmed A; Pogson CI; Rennie MJ
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):105-11. PubMed ID: 1883322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle lactate transport studied in sarcolemmal giant vesicles: dependence on fibre type and age.
    Juel C; Honig A; Pilegaard H
    Acta Physiol Scand; 1991 Dec; 143(4):361-5. PubMed ID: 1815471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of sarcolemmal vesicles from rabbit fast skeletal muscle.
    Seiler S; Fleischer S
    Methods Enzymol; 1988; 157():26-36. PubMed ID: 2976461
    [No Abstract]   [Full Text] [Related]  

  • 9. Human muscle lactate transport can be studied in sarcolemmal giant vesicles made from needle-biopsies.
    Juel C
    Acta Physiol Scand; 1991 May; 142(1):133-4. PubMed ID: 1652181
    [No Abstract]   [Full Text] [Related]  

  • 10. Kinetics of lactate transport in sarcolemmal giant vesicles obtained from human skeletal muscle.
    Juel C; Kristiansen S; Pilegaard H; Wojtaszewski J; Richter EA
    J Appl Physiol (1985); 1994 Mar; 76(3):1031-6. PubMed ID: 8005842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate transport in rat sarcolemmal vesicles and intact skeletal muscle, and after muscle contraction.
    McDermott JC; Bonen A
    Acta Physiol Scand; 1994 May; 151(1):17-28. PubMed ID: 8048333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased sarcolemmal Ca2+ transport activity in skeletal muscle of diabetic rats.
    Taira Y; Hata T; Ganguly PK; Elimban V; Dhalla NS
    Am J Physiol; 1991 Apr; 260(4 Pt 1):E626-32. PubMed ID: 1850203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid method for the preparation of sarcolemmal vesicles from rat aorta, and the stimulation of calcium uptake into the vesicles by cyclic AMP-dependent protein kinase.
    Brockbank KJ; England PJ
    FEBS Lett; 1980 Dec; 122(1):67-71. PubMed ID: 7215546
    [No Abstract]   [Full Text] [Related]  

  • 14. Dihydropyridine binding to the L-type Ca2+ channel in rabbit heart sarcolemma and skeletal muscle transverse-tubules: role of disulfide, sulfhydryl and phosphate groups.
    Murphy BJ; Washkurak AW; Tuana BS
    Biochim Biophys Acta; 1990 May; 1052(2):333-9. PubMed ID: 2159349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles.
    Grimditch GK; Barnard RJ; Sternlicht E; Whitson RH; Kaplan SA
    Am J Physiol; 1987 Mar; 252(3 Pt 1):E420-5. PubMed ID: 3548433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial purification and reconstitution of the sarcolemmal L-lactate carrier from rat skeletal muscle.
    Allen PJ; Brooks GA
    Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):207-12. PubMed ID: 7945241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of skeletal muscle sarcolemmal ATP-dependent calcium transport by calmodulin and cAMP-dependent protein kinase.
    Mickelson JR; Beaudry TM; Louis CF
    Arch Biochem Biophys; 1985 Oct; 242(1):127-36. PubMed ID: 3931553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of 2-chloropropionate on initial lactate uptake by rat skeletal muscle sarcolemmal vesicles.
    Granier P; Dubouchaud H; Eydoux N; Mercier J; Préfaut C
    J Appl Physiol (1985); 1996 Nov; 81(5):1973-7. PubMed ID: 8941518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle lactate transport studied in sarcolemmal giant vesicles.
    Juel C
    Biochim Biophys Acta; 1991 May; 1065(1):15-20. PubMed ID: 2043648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanadate stimulates D-glucose transport into sarcolemmal vesicles from rat skeletal muscles.
    Okumura N; Shimazu T
    J Biochem; 1992 Jul; 112(1):107-11. PubMed ID: 1429497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.