These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 20889160)

  • 21. Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding.
    Li J; Chen JL; Tang XH; Cai JH; Liu JH; Wang M
    J Colloid Interface Sci; 2020 Apr; 565():536-545. PubMed ID: 31982720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exfoliation and Defect Control of Two-Dimensional Few-Layer MXene Ti
    Rajavel K; Yu X; Zhu P; Hu Y; Sun R; Wong C
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49737-49747. PubMed ID: 33085473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding.
    Huang L; Li J; Li Y; He X; Yuan Y
    Nanoscale; 2019 Apr; 11(17):8616-8625. PubMed ID: 30994685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible Basalt Fiber/Aramid Nanofiber/Carbon Nanotube Electromagnetic Shielding Paper with Outstanding Environmental Stability and Joule Heating Performance.
    Song S; Li L; Ji D; Zhao J; Wu Q; Wang Q
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35495-35506. PubMed ID: 37439589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding.
    Chaudhary A; Kumari S; Kumar R; Teotia S; Singh BP; Singh AP; Dhawan SK; Dhakate SR
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10600-8. PubMed ID: 27035889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ag Nanoparticle-Thiolated Chitosan Composite Coating Reinforced by Ag-S Covalent Bonds with Excellent Electromagnetic Interference Shielding and Joule Heating Performances.
    Fang X; Sun H; Wu C; Fang Z; Li M; Zhao L; Tian B; Verma P; Wang J; Maeda R; Jiang Z
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28465-28475. PubMed ID: 37256318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robustly Superhydrophobic Conductive Textile for Efficient Electromagnetic Interference Shielding.
    Jia LC; Zhang G; Xu L; Sun WJ; Zhong GJ; Lei J; Yan DX; Li ZM
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1680-1688. PubMed ID: 30520621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites.
    Shi SL; Liang J
    Nanotechnology; 2008 Jun; 19(25):255707. PubMed ID: 21828667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures.
    Pande S; Singh B; Mathur R; Dhami T; Saini P; Dhawan S
    Nanoscale Res Lett; 2009 Jan; 4(4):327-34. PubMed ID: 20596500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?
    Pawar SP; Rzeczkowski P; Pötschke P; Krause B; Bose S
    ACS Omega; 2018 May; 3(5):5771-5782. PubMed ID: 31458777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of Flexible Carbon Fiber Fabrics with Adjustable Surface Wettability for High-Efficiency Electromagnetic Interference Shielding.
    Mei X; Lu L; Xie Y; Yu YX; Tang Y; Teh KS
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49030-49041. PubMed ID: 33073568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding.
    Biswas S; Kar GP; Bose S
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25448-63. PubMed ID: 26512416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon nanotubes noncovalently functionalized by an organic-inorganic hybrid: new building blocks for constructing superhydrophobic conductive coatings.
    Peng M; Qi J; Zhou Z; Liao Z; Zhu Z; Guo H
    Langmuir; 2010 Aug; 26(16):13062-4. PubMed ID: 20695543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon Allotropes-Based Paints and Their Composite Coatings for Electromagnetic Shielding Applications.
    Tudose IV; Mouratis K; Ionescu ON; Romanitan C; Pachiu C; Pricop E; Khomenko VH; Butenko O; Chernysh O; Barsukov VZ; Suchea MP; Koudoumas E
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomass-Derived, Highly Conductive Aqueous Inks for Superior Electromagnetic Interference Shielding, Joule Heating, and Strain Sensing.
    Wang Y; Peng S; Zhu S; Wang Y; Qiang Z; Ye C; Liao Y; Zhu M
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57930-57942. PubMed ID: 34797629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Stretchable Electromagnetic Interference Shielding Materials Made with Conductive Microcoils Confined to a Honeycomb Structure.
    Liu C; Cai J; Dang P; Li X; Zhang D
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12101-12108. PubMed ID: 32069019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies.
    Li XH; Li X; Liao KN; Min P; Liu T; Dasari A; Yu ZZ
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33230-33239. PubMed ID: 27934131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electromagnetic Shielding Performance of Different Metallic Coatings Deposited by Arc Thermal Spray Process.
    Jang JM; Lee HS; Singh JK
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33348891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.
    Wang Y; Gu FQ; Ni LJ; Liang K; Marcus K; Liu SL; Yang F; Chen JJ; Feng ZS
    Nanoscale; 2017 Nov; 9(46):18318-18325. PubMed ID: 29143001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophobic, flexible electromagnetic interference shielding films derived from hydrolysate of waste leather scraps.
    Gao D; Guo S; Zhou Y; Lyu B; Ma J; Zhao P; Pan D; Chen S
    J Colloid Interface Sci; 2022 May; 613():396-405. PubMed ID: 35042037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.