These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20889331)

  • 1. Development and functional organization of spinal locomotor circuits.
    Kiehn O
    Curr Opin Neurobiol; 2011 Feb; 21(1):100-9. PubMed ID: 20889331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs.
    Sibilla S; Ballerini L
    Prog Neurobiol; 2009 Sep; 89(1):46-60. PubMed ID: 19539686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the organization and modulation of spinal locomotor central pattern generators.
    Gordon IT; Whelan PJ
    J Exp Biol; 2006 Jun; 209(Pt 11):2007-14. PubMed ID: 16709903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing spinal circuits controlling walking in mammals.
    Kiehn O; Dougherty KJ; Hägglund M; Borgius L; Talpalar A; Restrepo CE
    Biochem Biophys Res Commun; 2010 May; 396(1):11-8. PubMed ID: 20494103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorimotor integration in the lamprey locomotor system.
    Wallén P
    Eur J Morphol; 1994 Aug; 32(2-4):168-75. PubMed ID: 7803163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potential oscillations in reticulospinal and spinobulbar neurons during locomotor activity.
    Einum JF; Buchanan JT
    J Neurophysiol; 2005 Jul; 94(1):273-81. PubMed ID: 15744013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium imaging of network function in the developing spinal cord.
    O'Donovan MJ; Bonnot A; Wenner P; Mentis GZ
    Cell Calcium; 2005 May; 37(5):443-50. PubMed ID: 15820392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the spatiotemporal organization of neural activity in the developing spinal cord.
    O'Donovan MJ; Bonnot A; Mentis GZ; Arai Y; Chub N; Shneider NA; Wenner P
    Dev Neurobiol; 2008 May; 68(6):788-803. PubMed ID: 18383543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord.
    Ren J; Greer JJ
    J Neurophysiol; 2003 Mar; 89(3):1187-95. PubMed ID: 12626606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
    Büschges A
    J Neurophysiol; 2005 Mar; 93(3):1127-35. PubMed ID: 15738270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord.
    Nishimaru H; Kakizaki M
    Acta Physiol (Oxf); 2009 Oct; 197(2):83-97. PubMed ID: 19673737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of central pattern generating circuits.
    Marder E; Rehm KJ
    Curr Opin Neurobiol; 2005 Feb; 15(1):86-93. PubMed ID: 15721749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional networks in the early development of sensory-motor circuits.
    Dasen JS
    Curr Top Dev Biol; 2009; 87():119-48. PubMed ID: 19427518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated network functioning in the spinal cord: an evolutionary perspective.
    Falgairolle M; de Seze M; Juvin L; Morin D; Cazalets JR
    J Physiol Paris; 2006; 100(5-6):304-16. PubMed ID: 17658245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythmic motor activity in thin transverse slice preparations of the fetal rat spinal cord.
    Nakayama K; Nishimaru H; Kudo N
    J Neurophysiol; 2004 Jul; 92(1):648-52. PubMed ID: 15028747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.