These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 20889691)
1. Aedes aegypti: an emerging model for vector mosquito development. Clemons A; Haugen M; Flannery E; Tomchaney M; Kast K; Jacowski C; Le C; Mori A; Simanton Holland W; Sarro J; Severson DW; Duman-Scheel M Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.emo141. PubMed ID: 20889691 [TBL] [Abstract][Full Text] [Related]
2. Whole-mount in situ hybridization for analysis of gene expression during Aedes aegypti development. Haugen M; Tomchaney M; Kast K; Flannery E; Clemons A; Jacowski C; Simanton Holland W; Le C; Severson D; Duman-Scheel M Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5509. PubMed ID: 20889706 [TBL] [Abstract][Full Text] [Related]
3. Immunohistochemical analysis of protein expression during Aedes aegypti development. Clemons A; Flannery E; Kast K; Severson D; Duman-Scheel M Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5510. PubMed ID: 20889707 [TBL] [Abstract][Full Text] [Related]
4. Fixation and preparation of developing tissues from Aedes aegypti. Clemons A; Haugen M; Flannery E; Kast K; Jacowski C; Severson D; Duman-Scheel M Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5508. PubMed ID: 20889705 [TBL] [Abstract][Full Text] [Related]
5. Culturing and egg collection of Aedes aegypti. Clemons A; Mori A; Haugen M; Severson DW; Duman-Scheel M Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5507. PubMed ID: 20889704 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of genes in Aedes aegypti embryos. Clemons A; Haugen M; Severson D; Duman-Scheel M Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5511. PubMed ID: 20889708 [TBL] [Abstract][Full Text] [Related]
7. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. Eisen L; Moore CG J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440 [TBL] [Abstract][Full Text] [Related]
8. Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti. Hussain M; Walker T; O'Neill SL; Asgari S Insect Biochem Mol Biol; 2013 Feb; 43(2):146-52. PubMed ID: 23202267 [TBL] [Abstract][Full Text] [Related]
9. Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti. Mysore K; Andrews E; Li P; Duman-Scheel M BMC Dev Biol; 2014 Feb; 14():9. PubMed ID: 24552425 [TBL] [Abstract][Full Text] [Related]
10. siRNA-mediated gene targeting in Aedes aegypti embryos reveals that frazzled regulates vector mosquito CNS development. Clemons A; Haugen M; Le C; Mori A; Tomchaney M; Severson DW; Duman-Scheel M PLoS One; 2011 Jan; 6(1):e16730. PubMed ID: 21304954 [TBL] [Abstract][Full Text] [Related]
12. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. Leming MT; Rund SS; Behura SK; Duffield GE; O'Tousa JE BMC Genomics; 2014 Dec; 15(1):1128. PubMed ID: 25516260 [TBL] [Abstract][Full Text] [Related]
13. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti. Bonizzoni M; Dunn WA; Campbell CL; Olson KE; Dimon MT; Marinotti O; James AA BMC Genomics; 2011 Jan; 12():82. PubMed ID: 21276245 [TBL] [Abstract][Full Text] [Related]
14. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities. Agha SB; Tchouassi DP; Bastos ADS; Sang R Parasit Vectors; 2017 Dec; 10(1):628. PubMed ID: 29284522 [TBL] [Abstract][Full Text] [Related]
15. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Paupy C; Le Goff G; Brengues C; Guerra M; Revollo J; Barja Simon Z; Hervé JP; Fontenille D Infect Genet Evol; 2012 Aug; 12(6):1260-9. PubMed ID: 22522103 [TBL] [Abstract][Full Text] [Related]
16. Progress in mapping the yellow fever mosquito genome. Sharakhova MV; Sharakhov IV Tsitologiia; 2013; 55(4):241-3. PubMed ID: 23875456 [TBL] [Abstract][Full Text] [Related]
17. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. Cooper DM; Thi EP; Chamberlain CM; Pio F; Lowenberger C Insect Mol Biol; 2007 Oct; 16(5):563-72. PubMed ID: 17725799 [TBL] [Abstract][Full Text] [Related]
18. Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. Jaimes-Dueñez J; Arboleda S; Triana-Chávez O; Gómez-Palacio A PLoS Negl Trop Dis; 2015 Apr; 9(4):e0003553. PubMed ID: 25893246 [TBL] [Abstract][Full Text] [Related]
19. Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae). Ponlawat A; Fansiri T; Kurusarttra S; Pongsiri A; McCardle PW; Evans BP; Richardson JH Southeast Asian J Trop Med Public Health; 2013 Mar; 44(2):167-78. PubMed ID: 23691625 [TBL] [Abstract][Full Text] [Related]
20. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. Akbari OS; Antoshechkin I; Amrhein H; Williams B; Diloreto R; Sandler J; Hay BA G3 (Bethesda); 2013 Sep; 3(9):1493-509. PubMed ID: 23833213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]