These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20889708)

  • 1. Functional analysis of genes in Aedes aegypti embryos.
    Clemons A; Haugen M; Severson D; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5511. PubMed ID: 20889708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-mount in situ hybridization for analysis of gene expression during Aedes aegypti development.
    Haugen M; Tomchaney M; Kast K; Flannery E; Clemons A; Jacowski C; Simanton Holland W; Le C; Severson D; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5509. PubMed ID: 20889706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixation and preparation of developing tissues from Aedes aegypti.
    Clemons A; Haugen M; Flannery E; Kast K; Jacowski C; Severson D; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5508. PubMed ID: 20889705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aedes aegypti: an emerging model for vector mosquito development.
    Clemons A; Haugen M; Flannery E; Tomchaney M; Kast K; Jacowski C; Le C; Mori A; Simanton Holland W; Sarro J; Severson DW; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.emo141. PubMed ID: 20889691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culturing and egg collection of Aedes aegypti.
    Clemons A; Mori A; Haugen M; Severson DW; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5507. PubMed ID: 20889704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical analysis of protein expression during Aedes aegypti development.
    Clemons A; Flannery E; Kast K; Severson D; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5510. PubMed ID: 20889707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. siRNA-mediated gene targeting in Aedes aegypti embryos reveals that frazzled regulates vector mosquito CNS development.
    Clemons A; Haugen M; Le C; Mori A; Tomchaney M; Severson DW; Duman-Scheel M
    PLoS One; 2011 Jan; 6(1):e16730. PubMed ID: 21304954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus).
    Lobo N; Li X; Hua-Van A; Fraser MJ
    Mol Genet Genomics; 2001 Mar; 265(1):66-71. PubMed ID: 11370874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aedes aegypti genomics.
    Severson DW; Knudson DL; Soares MB; Loftus BJ
    Insect Biochem Mol Biol; 2004 Jul; 34(7):715-21. PubMed ID: 15242713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae.
    Zhang X; Mysore K; Flannery E; Michel K; Severson DW; Zhu KY; Duman-Scheel M
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25867635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti.
    Leming MT; Rund SS; Behura SK; Duffield GE; O'Tousa JE
    BMC Genomics; 2014 Dec; 15(1):1128. PubMed ID: 25516260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly.
    Jasinskiene N; Coates CJ; Benedict MQ; Cornel AJ; Rafferty CS; James AA; Collins FH
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3743-7. PubMed ID: 9520437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary analysis of the kinesin light chain genes in the yellow fever mosquito Aedes aegypti: gene duplication as a source for novel early zygotic genes.
    Biedler JK; Tu Z
    BMC Evol Biol; 2010 Jul; 10():206. PubMed ID: 20615250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TALEN-based gene disruption in the dengue vector Aedes aegypti.
    Aryan A; Anderson MA; Myles KM; Adelman ZN
    PLoS One; 2013; 8(3):e60082. PubMed ID: 23555893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs.
    Whyard S; Erdelyan CN; Partridge AL; Singh AD; Beebe NW; Capina R
    Parasit Vectors; 2015 Feb; 8():96. PubMed ID: 25880645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells.
    Parry R; Asgari S
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.
    Mysore K; Flannery EM; Tomchaney M; Severson DW; Duman-Scheel M
    PLoS Negl Trop Dis; 2013; 7(5):e2215. PubMed ID: 23696908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for TALEN Evaluation, Use, and Mutation Detection in the Mosquito Aedes aegypti.
    Basu S; Aryan A; Haac ME; Myles KM; Adelman ZN
    Methods Mol Biol; 2016; 1338():157-77. PubMed ID: 26443221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microinjection of A. aegypti embryos to obtain transgenic mosquitoes.
    Jasinskiene N; Juhn J; James AA
    J Vis Exp; 2007; (5):219. PubMed ID: 18979017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.