BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20889747)

  • 61. Isolation, characterization, and complementation of a paralyzed flagellar mutant of Rhodobacter sphaeroides WS8.
    Sockett RE; Armitage JP
    J Bacteriol; 1991 May; 173(9):2786-90. PubMed ID: 1850401
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
    Kusumoto A; Shinohara A; Terashima H; Kojima S; Yakushi T; Homma M
    Microbiology (Reading); 2008 May; 154(Pt 5):1390-1399. PubMed ID: 18451048
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cloning of the fliI gene from Rhodobacter sphaeroides WS8 by analysis of a transposon mutant with impaired motility.
    Goodfellow IG; Pollitt CE; Sockett RE
    FEMS Microbiol Lett; 1996 Aug; 142(1):111-6. PubMed ID: 8759796
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mutant MotB proteins in Escherichia coli.
    Blair DF; Kim DY; Berg HC
    J Bacteriol; 1991 Jul; 173(13):4049-55. PubMed ID: 2061285
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [The
    Bao J; Yang J; Shao R; Zhang T; Liao J; Cheng Y; Guan Z; Qi X; Chen Z; Hong W; Cui G
    Sheng Wu Gong Cheng Xue Bao; 2023 Apr; 39(4):1578-1595. PubMed ID: 37154324
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The CtrA Regulon of Rhodobacter sphaeroides Favors Adaptation to a Particular Lifestyle.
    Hernández-Valle J; Sanchez-Flores A; Poggio S; Dreyfus G; Camarena L
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932315
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Suppressor mutants from MotB-D24E and MotS-D30E in the flagellar stator complex of Bacillus subtilis.
    Takahashi Y; Koyama K; Ito M
    J Gen Appl Microbiol; 2014; 60(4):131-9. PubMed ID: 25273986
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Purification, crystallization and preliminary X-ray crystallographic studies on the C-terminal domain of the flagellar protein FliL from Helicobacter pylori.
    Chan KL; Machuca MA; Rahman MM; Khan MF; Andrews D; Roujeinikova A
    Biosci Trends; 2018; 12(6):630-635. PubMed ID: 30674764
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Early Caulobacter crescentus genes fliL and fliM are required for flagellar gene expression and normal cell division.
    Yu J; Shapiro L
    J Bacteriol; 1992 May; 174(10):3327-38. PubMed ID: 1315735
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor.
    Morimoto YV; Nakamura S; Kami-ike N; Namba K; Minamino T
    Mol Microbiol; 2010 Dec; 78(5):1117-29. PubMed ID: 21091499
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli.
    Braun TF; Al-Mawsawi LQ; Kojima S; Blair DF
    Biochemistry; 2004 Jan; 43(1):35-45. PubMed ID: 14705929
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Methylation-independent and methylation-dependent chemotaxis in Rhodobacter sphaeroides and Rhodospirillum rubrum.
    Sockett RE; Armitage JP; Evans MC
    J Bacteriol; 1987 Dec; 169(12):5808-14. PubMed ID: 3119570
    [TBL] [Abstract][Full Text] [Related]  

  • 73. FliL is a membrane-associated component of the flagellar basal body of Salmonella.
    Schoenhals GJ; Macnab RM
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1769-1775. PubMed ID: 10439416
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli.
    Hamblin PA; Bourne NA; Armitage JP
    Mol Microbiol; 1997 Apr; 24(1):41-51. PubMed ID: 9140964
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori.
    Niehus E; Gressmann H; Ye F; Schlapbach R; Dehio M; Dehio C; Stack A; Meyer TF; Suerbaum S; Josenhans C
    Mol Microbiol; 2004 May; 52(4):947-61. PubMed ID: 15130117
    [TBL] [Abstract][Full Text] [Related]  

  • 76. FliL Differentially Interacts with Two Stator Systems To Regulate Flagellar Motor Output in Pseudomonas aeruginosa.
    Zhang L; Wu Z; Zhang R; Yuan J
    Appl Environ Microbiol; 2022 Nov; 88(22):e0153922. PubMed ID: 36286538
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ZomB is essential for flagellar motor reversals in Shewanella putrefaciens and Vibrio parahaemolyticus.
    Brenzinger S; Pecina A; Mrusek D; Mann P; Völse K; Wimmi S; Ruppert U; Becker A; Ringgaard S; Bange G; Thormann KM
    Mol Microbiol; 2018 Sep; 109(5):694-709. PubMed ID: 29995998
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli.
    Sharp LL; Zhou J; Blair DF
    Biochemistry; 1995 Jul; 34(28):9166-71. PubMed ID: 7619816
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Purification and characterization of the flagellar basal body of Rhodobacter sphaeroides.
    Kobayashi K; Saitoh T; Shah DS; Ohnishi K; Goodfellow IG; Sockett RE; Aizawa SI
    J Bacteriol; 2003 Sep; 185(17):5295-300. PubMed ID: 12923105
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Clusters of charged residues at the C terminus of MotA and N terminus of MotB are important for function of the Escherichia coli flagellar motor.
    Hosking ER; Manson MD
    J Bacteriol; 2008 Aug; 190(15):5517-21. PubMed ID: 18469110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.