These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 20889775)
1. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Runquist D; Hahn-Hägerdal B; Bettiga M Appl Environ Microbiol; 2010 Dec; 76(23):7796-802. PubMed ID: 20889775 [TBL] [Abstract][Full Text] [Related]
2. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144 [TBL] [Abstract][Full Text] [Related]
3. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK; Ho NW; Khan A; Sedlak M J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780 [TBL] [Abstract][Full Text] [Related]
4. An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. Ma TY; Lin TH; Hsu TC; Huang CF; Guo GL; Hwang WS J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1477-86. PubMed ID: 22740288 [TBL] [Abstract][Full Text] [Related]
5. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
6. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
7. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
8. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
10. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Watanabe S; Abu Saleh A; Pack SP; Annaluru N; Kodaki T; Makino K Microbiology (Reading); 2007 Sep; 153(Pt 9):3044-3054. PubMed ID: 17768247 [TBL] [Abstract][Full Text] [Related]
11. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Xiong M; Chen G; Barford J Bioresour Technol; 2011 Oct; 102(19):9206-15. PubMed ID: 21831633 [TBL] [Abstract][Full Text] [Related]
12. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
13. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Toivari MH; Aristidou A; Ruohonen L; Penttilä M Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146 [TBL] [Abstract][Full Text] [Related]
14. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM; Saimura M; Kodaki T J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809 [TBL] [Abstract][Full Text] [Related]
15. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. Zhang B; Li L; Zhang J; Gao X; Wang D; Hong J J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):305-16. PubMed ID: 23392758 [TBL] [Abstract][Full Text] [Related]
16. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. Wahlbom CF; van Zyl WH; Jönsson LJ; Hahn-Hägerdal B; Otero RR FEMS Yeast Res; 2003 May; 3(3):319-26. PubMed ID: 12689639 [TBL] [Abstract][Full Text] [Related]
17. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Jo JH; Oh SY; Lee HS; Park YC; Seo JH Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683 [TBL] [Abstract][Full Text] [Related]
18. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Runquist D; Hahn-Hägerdal B; Bettiga M Microb Cell Fact; 2009 Sep; 8():49. PubMed ID: 19778438 [TBL] [Abstract][Full Text] [Related]
19. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926 [TBL] [Abstract][Full Text] [Related]
20. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. Zha J; Shen M; Hu M; Song H; Yuan Y J Ind Microbiol Biotechnol; 2014 Jan; 41(1):27-39. PubMed ID: 24113893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]