BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20890097)

  • 1. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.
    Mendes-Ferreira A; Barbosa C; Jimenez-Marti E; Del Olmo ML; Mendes-Faia A
    J Microbiol Biotechnol; 2010 Sep; 20(9):1314-21. PubMed ID: 20890097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulfide synthesis in native Saccharomyces cerevisiae strains during alcoholic fermentations.
    Wang C; Liu M; Li Y; Zhang Y; Yao M; Qin Y; Liu Y
    Food Microbiol; 2018 Apr; 70():206-213. PubMed ID: 29173629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation.
    Bartra E; Casado M; Carro D; Campamà C; Piña B
    J Appl Microbiol; 2010 Jul; 109(1):272-81. PubMed ID: 20059614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation.
    Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Leão C; Mendes-Faia A; Pérez-Ortín JE
    Appl Environ Microbiol; 2007 Aug; 73(16):5363-9. PubMed ID: 17601813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen.
    Jiranek V; Langridge P; Henschke PA
    Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MET2 affects production of hydrogen sulfide during wine fermentation.
    Huang C; Roncoroni M; Gardner RC
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7125-35. PubMed ID: 24841117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 expression.
    Iijima K; Ogata T
    J Appl Microbiol; 2010 Dec; 109(6):1906-13. PubMed ID: 20681972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context.
    Huang CW; Walker ME; Fedrizzi B; Gardner RC; Jiranek V
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28830086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations.
    Mendes-Ferreira A; Barbosa C; Falco V; Leão C; Mendes-Faia A
    J Ind Microbiol Biotechnol; 2009 Apr; 36(4):571-83. PubMed ID: 19190948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae.
    Spiropoulos A; Bisson LF
    Appl Environ Microbiol; 2000 Oct; 66(10):4421-6. PubMed ID: 11010893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1.
    Donalies UE; Stahl U
    Yeast; 2002 Apr; 19(6):475-84. PubMed ID: 11921096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.
    Cordente AG; Heinrich A; Pretorius IS; Swiegers JH
    FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
    Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V
    Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast.
    Nardi T; Corich V; Giacomini A; Blondin B
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1686-1696. PubMed ID: 20203053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae.
    Linderholm A; Dietzel K; Hirst M; Bisson LF
    Appl Environ Microbiol; 2010 Dec; 76(23):7699-707. PubMed ID: 20889780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of hydrogen sulfide in wine and in fermentation: influence of yeast strain and supplementation of yeast available nitrogen.
    Ugliano M; Kolouchova R; Henschke PA
    J Ind Microbiol Biotechnol; 2011 Mar; 38(3):423-9. PubMed ID: 20668912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine.
    Ugliano M; Fedrizzi B; Siebert T; Travis B; Magno F; Versini G; Henschke PA
    J Agric Food Chem; 2009 Jun; 57(11):4948-55. PubMed ID: 19391591
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast.
    Choi KM; Kim S; Kim S; Lee HM; Kaya A; Chun BH; Lee YK; Park TS; Lee CK; Eyun SI; Lee BC
    Aging (Albany NY); 2019 Jun; 11(12):4254-4273. PubMed ID: 31254461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.