These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 20890326)

  • 1. Does human skin truly behave as an array of helical antennae in the millimeter and terahertz wave ranges?
    Ney M; Abdulhalim I
    Opt Lett; 2010 Oct; 35(19):3180-2. PubMed ID: 20890326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electromagnetic response of human skin in the millimetre and submillimetre wave range.
    Feldman Y; Puzenko A; Ben Ishai P; Caduff A; Davidovich I; Sakran F; Agranat AJ
    Phys Med Biol; 2009 Jun; 54(11):3341-63. PubMed ID: 19430110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human skin as arrays of helical antennas in the millimeter and submillimeter wave range.
    Feldman Y; Puzenko A; Ben Ishai P; Caduff A; Agranat AJ
    Phys Rev Lett; 2008 Mar; 100(12):128102. PubMed ID: 18517913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region.
    Ney M; Abdulhalim I
    J Biomed Opt; 2011 Jun; 16(6):067006. PubMed ID: 21721827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects.
    Alekseev SI; Ziskin MC
    IEEE Trans Biomed Eng; 2001 Sep; 48(9):1013-9. PubMed ID: 11534836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region.
    Tripathi SR; Miyata E; Ishai PB; Kawase K
    Sci Rep; 2015 Mar; 5():9071. PubMed ID: 25766116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular polarization induced by the three-dimensional chiral structure of human sweat ducts.
    Hayut I; Ben Ishai P; Agranat AJ; Feldman Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042715. PubMed ID: 24827286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling millimetre wave propagation and absorption in a high resolution skin model: the effect of sweat glands.
    Shafirstein G; Moros EG
    Phys Med Biol; 2011 Mar; 56(5):1329-39. PubMed ID: 21297244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The AC conductivity of human sweat ducts as the dominant factor in the sub-THz reflection coefficient of skin.
    Betzalel N; Ben Ishai P; Einav S; Feldman Y
    J Biophotonics; 2021 Jul; 14(7):e202100027. PubMed ID: 33890427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidermal stem cells are the source of sweat glands in human fetal skin: evidence of synergetic development of stem cells, sweat glands, growth factors, and matrix metalloproteinases.
    Fu X; Li J; Sun X; Sun T; Sheng Z
    Wound Repair Regen; 2005; 13(1):102-8. PubMed ID: 15659042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human skin as a sub-THz receiver - Does 5G pose a danger to it or not?
    Betzalel N; Ben Ishai P; Feldman Y
    Environ Res; 2018 May; 163():208-216. PubMed ID: 29459303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radio sweat gland--90 GHz.
    Ball P
    Nature; 2008 Apr; 452(7188):676. PubMed ID: 18401371
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of extremely-low-frequency pulsed electromagnetic fields on collagen synthesis in rat skin.
    Ahmadian S; Zarchi SR; Bolouri B
    Biotechnol Appl Biochem; 2006 Feb; 43(Pt 2):71-5. PubMed ID: 16162095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans.
    Vainer BG
    Phys Med Biol; 2005 Dec; 50(23):R63-94. PubMed ID: 16306642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and distribution characteristics of sweat glands in hypertrophic scar and their possible effects on sweat gland regeneration.
    Fu XB; Sun TZ; Li XK; Sheng ZY
    Chin Med J (Engl); 2005 Feb; 118(3):186-91. PubMed ID: 15740645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reassessment of the electromagnetic reflection response of human skin at W-band.
    Yang B; Donnan RS; Zhou M; Kingravi AA
    Opt Lett; 2011 Nov; 36(21):4203-5. PubMed ID: 22048365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Distribution of millimeter-band electromagnetic fields in model and biological tissues during irradiation in the reactive zone of an irradiator].
    Betskiĭ OV; Petrov IIu; Tiazhelov VV; Khizhniak EP; Iaremenko IuG
    Dokl Akad Nauk SSSR; 1989; 309(1):230-3. PubMed ID: 2625120
    [No Abstract]   [Full Text] [Related]  

  • 18. Frequency of the resonance of the human sweat duct in a normal mode of operation.
    Tripathi SR; Ben Ishai P; Kawase K
    Biomed Opt Express; 2018 Mar; 9(3):1301-1308. PubMed ID: 29541522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniformity of dextrogyrate screw-like ascent of sweat ducts in the epidermis.
    Wolf J
    Folia Morphol (Praha); 1968; 16(2):139-41. PubMed ID: 4967707
    [No Abstract]   [Full Text] [Related]  

  • 20. Phytohemagglutinin-binding sites in the skin. A useful histochemical marker of acrosyringium and distal portions of intradermal sweat ducts.
    Saida T; Uhara H; Mikoshiba H
    Dermatologica; 1989; 179(1):25-8. PubMed ID: 2767294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.