These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20890448)

  • 1. STDP in Recurrent Neuronal Networks.
    Gilson M; Burkitt A; van Hemmen LJ
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20890448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):411-26. PubMed ID: 19937071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Firing Variability on Network Structures with Spike-Timing-Dependent Plasticity.
    Min B; Zhou D; Cai D
    Front Comput Neurosci; 2018; 12():1. PubMed ID: 29410621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike-timing-dependent plasticity for neurons with recurrent connections.
    Burkitt AN; Gilson M; van Hemmen JL
    Biol Cybern; 2007 May; 96(5):533-46. PubMed ID: 17415586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delay-Induced Multistability and Loop Formation in Neuronal Networks with Spike-Timing-Dependent Plasticity.
    Madadi Asl M; Valizadeh A; Tass PA
    Sci Rep; 2018 Aug; 8(1):12068. PubMed ID: 30104713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of small-world structure in networks of spiking neurons through STDP plasticity.
    Basalyga G; Gleiser PM; Wennekers T
    Adv Exp Med Biol; 2011; 718():33-9. PubMed ID: 21744208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous emergence of connectivity assemblies via spike triplet interactions.
    Montangie L; Miehl C; Gjorgjieva J
    PLoS Comput Biol; 2020 May; 16(5):e1007835. PubMed ID: 32384081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous dynamics of synaptic weights in stochastic models with pair-based spike-timing-dependent plasticity.
    Vignoud G; Robert P
    Phys Rev E; 2022 May; 105(5-1):054405. PubMed ID: 35706237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities.
    Yang J; Feng P; Wu Y
    Cogn Neurodyn; 2024 Jun; 18(3):1307-1321. PubMed ID: 38826660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed-Form Treatment of the Interactions between Neuronal Activity and Timing-Dependent Plasticity in Networks of Linear Neurons.
    Kolodziejski C; Tetzlaff C; Wörgötter F
    Front Comput Neurosci; 2010; 4():134. PubMed ID: 21152348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.