BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20890784)

  • 1. Sweat loss prediction using a multi-model approach.
    Xu X; Santee WR
    Int J Biometeorol; 2011 Jul; 55(4):501-8. PubMed ID: 20890784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical prediction of core body temperature from environment, activity, and clothing: The heat strain decision aid (HSDA).
    Potter AW; Blanchard LA; Friedl KE; Cadarette BS; Hoyt RW
    J Therm Biol; 2017 Feb; 64():78-85. PubMed ID: 28166950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of two mathematical models for predicted human thermal responses to hot and humid environments.
    Potter AW; Yermakova II; Hunt AP; Hancock JW; Oliveira AVM; Looney DP; Montgomery LD
    J Therm Biol; 2021 Apr; 97():102902. PubMed ID: 33863455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat Strain Decision Aid (HSDA) accurately predicts individual-based core body temperature rise while wearing chemical protective clothing.
    Potter AW; Hunt AP; Cadarette BS; Fogarty A; Srinivasan S; Santee WR; Blanchard LA; Looney DP
    Comput Biol Med; 2019 Apr; 107():131-136. PubMed ID: 30802695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of thermal stress during rest and exercise in the paediatric population.
    Falk B
    Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human responses in heat - comparison of the Predicted Heat Strain and the Fiala multi-node model for a case of intermittent work.
    Lundgren-Kownacki K; Martínez N; Johansson B; Psikuta A; Annaheim S; Kuklane K
    J Therm Biol; 2017 Dec; 70(Pt A):45-52. PubMed ID: 29074025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modelling of heat strain responses of exercising personnel in tropical climate.
    Tan AP; Cheong CH; Lee T; Seng KY; Teo CJ
    Comput Biol Med; 2021 Jul; 134():104530. PubMed ID: 34118753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoregulatory adaptations with progressive heat acclimation are predominantly evident in uncompensable, but not compensable, conditions.
    Ravanelli N; Coombs G; Imbeault P; Jay O
    J Appl Physiol (1985); 2019 Oct; 127(4):1095-1106. PubMed ID: 31414952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the limits to accurate sweat loss prediction during prolonged exercise.
    Cheuvront SN; Montain SJ; Goodman DA; Blanchard L; Sawka MN
    Eur J Appl Physiol; 2007 Sep; 101(2):215-24. PubMed ID: 17534643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoregulation in boys and men exercising at the same heat production per unit body mass.
    Leites GT; Cunha GS; Obeid J; Wilk B; Meyer F; Timmons BW
    Eur J Appl Physiol; 2016 Jul; 116(7):1411-9. PubMed ID: 27231012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body map of regional vs. whole body sweating rate and sweat electrolyte concentrations in men and women during moderate exercise-heat stress.
    Baker LB; Ungaro CT; Sopeña BC; Nuccio RP; Reimel AJ; Carter JM; Stofan JR; Barnes KA
    J Appl Physiol (1985); 2018 May; 124(5):1304-1318. PubMed ID: 29420145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local differences in sweat secretion from the head during rest and exercise in the heat.
    Machado-Moreira CA; Wilmink F; Meijer A; Mekjavic IB; Taylor NA
    Eur J Appl Physiol; 2008 Sep; 104(2):257-64. PubMed ID: 18157675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses of men and women during exercise in hot environments with equivalent WBGT.
    Keatisuwan W; Ohnaka T; Tochihara Y
    Appl Human Sci; 1996 Nov; 15(6):249-58. PubMed ID: 9008978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia.
    Coombs GB; Cramer MN; Ravanelli N; Imbeault P; Jay O
    J Appl Physiol (1985); 2017 May; 122(5):1198-1207. PubMed ID: 28302708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological adjustments to hypohydration: Impact on thermoregulation.
    Kenefick RW; Cheuvront SN
    Auton Neurosci; 2016 Apr; 196():47-51. PubMed ID: 26944095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of training, environment, and host factors on the sweating response to exercise.
    Armstrong LE; Maresh CM
    Int J Sports Med; 1998 Jun; 19 Suppl 2():S103-5. PubMed ID: 9694410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermometry and calorimetry assessment of sweat response during exercise in the heat.
    Flouris AD; Cheung SS
    Eur J Appl Physiol; 2010 Mar; 108(5):905-11. PubMed ID: 19943059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of short-term training on thermoregulatory and sweat responses during exercise in hot conditions.
    McCutcheon LJ; Geor RJ
    Equine Vet J Suppl; 2010 Nov; (38):135-41. PubMed ID: 21058995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equine sweating responses to submaximal exercise during 21 days of heat acclimation.
    McCutcheon LJ; Geor RJ; Ecker GL; Lindinger MI
    J Appl Physiol (1985); 1999 Nov; 87(5):1843-51. PubMed ID: 10562629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural control and mechanisms of eccrine sweating during heat stress and exercise.
    Shibasaki M; Wilson TE; Crandall CG
    J Appl Physiol (1985); 2006 May; 100(5):1692-701. PubMed ID: 16614366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.