These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20891015)

  • 21. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment.
    Jiang M; Wang L; Ji R
    Chemosphere; 2010 Sep; 80(11):1399-405. PubMed ID: 20579689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems.
    Nfon E; Armitage JM; Cousins IT
    Sci Total Environ; 2011 Nov; 409(24):5416-22. PubMed ID: 21962596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of flumioxazin in illuminated water-sediment systems.
    Shibata A; Kodaka R; Fujisawa T; Katagi T
    J Agric Food Chem; 2011 Oct; 59(20):11186-95. PubMed ID: 21919467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems.
    Cleveland CB; Bormett GA; Saunders DG; Powers FL; McGibbon AS; Reeves GL; Rutherford L; Balcer JL
    J Agric Food Chem; 2002 May; 50(11):3244-56. PubMed ID: 12009994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fate of febantel in the aquatic environment-the role of abiotic elimination processes.
    Babić S; Pavlović DM; Biošić M; Ašperger D; Škorić I; Runje M
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):28917-28927. PubMed ID: 30105676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms.
    Sanderson H; Laird B; Pope L; Brain R; Wilson C; Johnson D; Bryning G; Peregrine AS; Boxall A; Solomon K
    Aquat Toxicol; 2007 Dec; 85(4):229-40. PubMed ID: 17963854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissipation of a commercial mixture of polyoxyethylene amine surfactants in aquatic outdoor microcosms: Effect of water depth and sediment organic carbon.
    Rodriguez-Gil JL; Lissemore L; Solomon K; Hanson M
    Sci Total Environ; 2016 Apr; 550():449-458. PubMed ID: 26845181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments.
    Lai HT; Lin JJ
    Chemosphere; 2009 Apr; 75(4):462-8. PubMed ID: 19230954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photodegradation of flumorph in aqueous solutions and natural water under abiotic conditions.
    Hu JY; Liu C; Zhang X; Qin DM; Liu CL
    J Agric Food Chem; 2009 Oct; 57(20):9629-33. PubMed ID: 19807099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid residue analysis of oxathiapiprolin and its metabolites in typical Chinese soil, water, and sediments by a modified quick, easy, cheap, effective, rugged, and safe method with ultra high performance liquid chromatography and tandem mass spectrometry.
    Ju C; Dong F; Liu X; Wu X; Zhao H; Zheng Y; Xu J
    J Sep Sci; 2015 Mar; 38(6):909-16. PubMed ID: 25581592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of indirect photochemical degradation in the environmental fate of pesticides: a review.
    Remucal CK
    Environ Sci Process Impacts; 2014 Apr; 16(4):628-53. PubMed ID: 24419250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the fate and distribution of ethiprole in water-fish-sediment microcosm using a fugacity model.
    Hu M; Liu X; Wu X; Dong F; Xu J; Chen W; Zheng Y
    Sci Total Environ; 2017 Jan; 576():696-704. PubMed ID: 27810756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The enantioselective environmental fate of mandipropamid in water-sediment microcosms: Distribution, degradation, degradation pathways and toxicity assessment.
    Zhang J; Li Y; Tan Y; Zhang Y; Li R; Zhou L; Wang M
    Sci Total Environ; 2023 Sep; 891():164650. PubMed ID: 37285990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps.
    Challis JK; Hanson ML; Friesen KJ; Wong CS
    Environ Sci Process Impacts; 2014 Apr; 16(4):672-96. PubMed ID: 24643336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistence and sorption of fipronil degradates in urban stream sediments.
    Lin K; Haver D; Oki L; Gan J
    Environ Toxicol Chem; 2009 Jul; 28(7):1462-8. PubMed ID: 19215184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental fate and toxicology of chlorothalonil.
    Van Scoy AR; Tjeerdema RS
    Rev Environ Contam Toxicol; 2014; 232():89-105. PubMed ID: 24984836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aquatic fate of a double-stranded RNA in a sediment---water system following an over-water application.
    Fischer JR; Zapata F; Dubelman S; Mueller GM; Uffman JP; Jiang C; Jensen PD; Levine SL
    Environ Toxicol Chem; 2017 Mar; 36(3):727-734. PubMed ID: 27530554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.
    Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW
    Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fate of fipronil in modular estuarine mesocosms.
    Walse SS; Pennington PL; Scott GI; Ferry JL
    J Environ Monit; 2004 Jan; 6(1):58-64. PubMed ID: 14737471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.