BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2089418)

  • 1. Is rhodamine 123 a photosensitizer?
    Morlière P; Santus R; Bazin M; Kohen E; Carillet V; Bon F; Rainasse J; Dubertret L
    Photochem Photobiol; 1990 Oct; 52(4):703-10. PubMed ID: 2089418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial targeting for photochemotherapy. Can selective tumor cell killing be predicted based on n-octanol/water distribution coefficients?
    Belostotsky I; da Silva SM; Paez MG; Indig GL
    Biotech Histochem; 2011 Oct; 86(5):302-14. PubMed ID: 20465515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosensitization of L1210 leukaemic cells by argon laser irradiation after incubation with haematoporphyrin derivative and rhodamine 123.
    Foultier MT; Patrice T; Tanielian C; Wolff C; Yactayo S; Berrada A; Combre A
    J Photochem Photobiol B; 1991 Jul; 10(1-2):119-32. PubMed ID: 1835497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric ZnPc-rhodamine B conjugates for mitochondrial targeted photodynamic therapy.
    Muli DK; Rajaputra P; You Y; McGrath DV
    Bioorg Med Chem Lett; 2014 Sep; 24(18):4496-4500. PubMed ID: 25150377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argon laser phototherapy of human malignancies using rhodamine-123 as a new laser dye: the intracellular role of oxygen.
    Castro DJ; Saxton RE; Markley J; Foote CS; Fetterman HR; Castro DJ; Ward PH
    Laryngoscope; 1990 Aug; 100(8):884-91. PubMed ID: 2166193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of delocalized lipophilic cationic dyes as delivery vehicles for photosensitizers to mitochondria.
    Ngen EJ; Rajaputra P; You Y
    Bioorg Med Chem; 2009 Sep; 17(18):6631-40. PubMed ID: 19692249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple modality treatment of carcinoma cells with Pt(Rh-123)2 plus x-ray plus light.
    Ara G; Varshney A; Ha CS; Oseroff AR; Herman TS; Teicher BA
    Photochem Photobiol; 1992 Apr; 55(4):561-7. PubMed ID: 1620732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser photochemotherapy of rhodamine-123 sensitized human glioma cells in vitro.
    Powers SK; Pribil S; Gillespie GY; Watkins PJ
    J Neurosurg; 1986 Jun; 64(6):918-23. PubMed ID: 3701443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and in vitro biological evaluation of lipophilic cation conjugated photosensitizers for targeting mitochondria.
    Rajaputra P; Nkepang G; Watley R; You Y
    Bioorg Med Chem; 2013 Jan; 21(2):379-87. PubMed ID: 23245573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel heptamethine cyanine photosensitizer for FRET-amplified photodynamic therapy and two-photon imaging in A-549 cells.
    Liu J; Wang L; Shen R; Zhao J; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jun; 274():121083. PubMed ID: 35248855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interstitial laser photochemotherapy of rhodamine-123-sensitized rat glioma.
    Powers SK; Beckman WC; Brown JT; Kolpack LC
    J Neurosurg; 1987 Dec; 67(6):889-94. PubMed ID: 3681427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.
    Davies KS; Linder MK; Kryman MW; Detty MR
    Bioorg Med Chem; 2016 Sep; 24(17):3908-3917. PubMed ID: 27246858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin.
    Iinuma S; Farshi SS; Ortel B; Hasan T
    Br J Cancer; 1994 Jul; 70(1):21-8. PubMed ID: 8018536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.
    Marino J; García Vior MC; Furmento VA; Blank VC; Awruch J; Roguin LP
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2553-62. PubMed ID: 23994488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly selective mitochondria-targeting amphiphilic silicon(IV) phthalocyanines with axially ligated rhodamine B for photodynamic therapy.
    Zhao Z; Chan PS; Li H; Wong KL; Wong RN; Mak NK; Zhang J; Tam HL; Wong WY; Kwong DW; Wong WK
    Inorg Chem; 2012 Jan; 51(2):812-21. PubMed ID: 22191427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodamine dyes as potential agents for photochemotherapy of cancer in human bladder carcinoma cells.
    Shea CR; Chen N; Wimberly J; Hasan T
    Cancer Res; 1989 Jul; 49(14):3961-5. PubMed ID: 2736534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective photodynamic action by rhodamine 123 leading to photosensitized killing of Chinese hamster ovary cells in tissue culture and a proposed mechanism.
    Richmond RC; O'Hara JA
    Photochem Photobiol; 1993 Feb; 57(2):291-7. PubMed ID: 8451292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy.
    Kim S; Tachikawa T; Fujitsuka M; Majima T
    J Am Chem Soc; 2014 Aug; 136(33):11707-15. PubMed ID: 25075870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced singlet oxygen generation from a porphyrin-rhodamine B dyad by two-photon excitation through resonance energy transfer.
    Ngen EJ; Xiao L; Rajaputra P; Yan X; You Y
    Photochem Photobiol; 2013; 89(4):841-8. PubMed ID: 23489066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of rhodamine 123 with living cells studied by flow cytometry.
    Darzynkiewicz Z; Traganos F; Staiano-Coico L; Kapuscinski J; Melamed MR
    Cancer Res; 1982 Mar; 42(3):799-806. PubMed ID: 7059978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.