BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2090010)

  • 1. Genetic analysis of erythrocyte superoxide dismutase polymorphism in the genus Cervus.
    Herzog S
    Anim Genet; 1990; 21(4):391-400. PubMed ID: 2090010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferrin polymorphism and genetic differentiation in Cervus elaphus L. (European red deer) populations.
    Herzog S; Mushövel C; Hattemer HH; Herzog A
    Heredity (Edinb); 1991 Oct; 67 ( Pt 2)():231-9. PubMed ID: 1757275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism and genetic control of erythrocyte 6-phosphogluconate dehydrogenase in the genus Cervus.
    Herzog S
    Anim Genet; 1988; 19(3):291-4. PubMed ID: 3207221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the erythrocyte superoxide dismutase allozymes in the deer Cervus elaphus.
    He K; Wilton SD; Tate ML; Murphy MP
    Anim Genet; 1997 Aug; 28(4):299-301. PubMed ID: 9345726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic polymorphism of transferrin in fallow deer, Cervus dama L.
    Herzog S
    Anim Genet; 1989; 20(4):421-6. PubMed ID: 2619108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic polymorphism of erythrocyte diaphorase in red deer, Cervus elaphus L.
    Tate ML; McEwan KM
    Anim Genet; 1992; 23(5):449-52. PubMed ID: 1416251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic differentiation in populations of red deer, Cervus elaphus, in Denmark.
    Strandgaard H; Simonsen V
    Hereditas; 1993; 119(2):171-7. PubMed ID: 8106262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide study on genetic diversity and phylogeny of five species in the genus Cervus.
    Hu P; Shao Y; Xu J; Wang T; Li Y; Liu H; Rong M; Su W; Chen B; Cui S; Cui X; Yang F; Tamate H; Xing X
    BMC Genomics; 2019 May; 20(1):384. PubMed ID: 31101010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Authenticity control of game meat products--a single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR.
    Druml B; Grandits S; Mayer W; Hochegger R; Cichna-Markl M
    Food Chem; 2015 Mar; 170():508-17. PubMed ID: 25306377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary study of the genetic diversity of Xinjiang Tarim red deer (Cervus elaphus yarkandensis) using the microsatellite DNA method.
    Mahmut H; Ganzorig S; Onuma M; Masuda R; Suzuki M; Ohtaishi N
    Jpn J Vet Res; 2001 Nov; 49(3):231-7. PubMed ID: 11799907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of the histopathologic features of bovine tuberculosis in cattle, fallow deer (Dama dama), sika deer (Cervus nippon), and red deer and elk (Cervus elaphus).
    Rhyan JC; Saari DA
    Vet Pathol; 1995 May; 32(3):215-20. PubMed ID: 7604487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating temporal changes in hybridization and introgression in a predominantly bimodal hybridizing population of invasive sika (Cervus nippon) and native red deer (C. elaphus) on the Kintyre Peninsula, Scotland.
    Senn HV; Barton NH; Goodman SJ; Swanson GM; Abernethy KA; Pemberton JM
    Mol Ecol; 2010 Mar; 19(5):910-24. PubMed ID: 20102517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the blood of fallow deer (Dama dama) and red deer (Cervus elaphus): haematology, red cell enzymes, metabolic intermediates and glycolytic rates.
    Agar NS; Godwin IR
    Comp Biochem Physiol B; 1992 Dec; 103(4):909-11. PubMed ID: 1478069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area.
    Senn HV; Pemberton JM
    Mol Ecol; 2009 Mar; 18(5):862-76. PubMed ID: 19175500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland.
    Goodman SJ; Barton NH; Swanson G; Abernethy K; Pemberton JM
    Genetics; 1999 May; 152(1):355-71. PubMed ID: 10224266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic influences on reproduction of female red deer (Cervus elaphus) (1) seasonal luteal cyclicity.
    Asher GW; O'Neill KT; Scott IC; Mockett BG; Fisher MW
    Anim Reprod Sci; 2000 Apr; 59(1-2):43-59. PubMed ID: 10804275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer -- possible employment in forensic applications.
    Poetsch M; Seefeldt S; Maschke M; Lignitz E
    Forensic Sci Int; 2001 Feb; 116(1):1-8. PubMed ID: 11118746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries).
    Slate J; Coltman DW; Goodman SJ; MacLean I; Pemberton JM; Williams JL
    Anim Genet; 1998 Aug; 29(4):307-15. PubMed ID: 9745670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biochemical systematics of red and sika deer (genus Cervus) in Ireland.
    Linnell JC; Cross TF
    Hereditas; 1991; 115(3):267-73. PubMed ID: 1816170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Diagnostic SNP Markers To Monitor Hybridization Between Sika Deer (
    Ba H; Li Z; Yang Y; Li C
    G3 (Bethesda); 2018 Jul; 8(7):2173-2179. PubMed ID: 29789312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.