These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2090301)

  • 1. Structure-property relationships for the design of polyiminocarbonates.
    Pulapura S; Li C; Kohn J
    Biomaterials; 1990 Nov; 11(9):666-78. PubMed ID: 2090301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(iminocarbonates) as potential biomaterials.
    Kohn J; Langer R
    Biomaterials; 1986 May; 7(3):176-82. PubMed ID: 3719035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue compatibility of tyrosine-derived polycarbonates and polyiminocarbonates: an initial evaluation.
    Silver FH; Marks M; Kato YP; Li C; Pulapura S; Kohn J
    J Long Term Eff Med Implants; 1992; 1(4):329-46. PubMed ID: 10171118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis, and preliminary characterization of tyrosine-containing polyarylates: new biomaterials for medical applications.
    Fiordeliso J; Bron S; Kohn J
    J Biomater Sci Polym Ed; 1994; 5(6):497-510. PubMed ID: 8086380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials. Part I: synthesis and evaluation.
    Yu C; Kohn J
    Biomaterials; 1999 Feb; 20(3):253-64. PubMed ID: 10030602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine-derived polycarbonates: backbone-modified "pseudo"-poly (amino acids) designed for biomedical applications.
    Pulapura S; Kohn J
    Biopolymers; 1992 Apr; 32(4):411-7. PubMed ID: 1623136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A library of L-tyrosine-derived biodegradable polyarylates for potential biomaterial applications, part I: synthesis, characterization and accelerated hydrolytic degradation.
    Huang X; Shen CY; Chen JC; Li Q
    J Biomater Sci Polym Ed; 2009; 20(7-8):935-55. PubMed ID: 19454161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials.
    Ertel SI; Kohn J
    J Biomed Mater Res; 1994 Aug; 28(8):919-30. PubMed ID: 7983090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-property correlations in a combinatorial library of degradable biomaterials.
    Brocchini S; James K; Tangpasuthadol V; Kohn J
    J Biomed Mater Res; 1998 Oct; 42(1):66-75. PubMed ID: 9740008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.
    Yang J; Hao Q; Liu X; Ba C; Cao A
    Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(hexyl-substituted lactides): novel injectable hydrophobic drug delivery systems.
    Trimaille T; Gurny R; Möller M
    J Biomed Mater Res A; 2007 Jan; 80(1):55-65. PubMed ID: 16958050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study.
    Engelberg I; Kohn J
    Biomaterials; 1991 Apr; 12(3):292-304. PubMed ID: 1649646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-tyrosine-based backbone-modified poly(amino acids).
    Gupta AS; Lopina ST
    J Biomater Sci Polym Ed; 2002; 13(10):1093-104. PubMed ID: 12484486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymers from functional macrolactones as potential biomaterials: enzymatic ring opening polymerization, biodegradation, and biocompatibility.
    van der Meulen I; de Geus M; Antheunis H; Deumens R; Joosten EA; Koning CE; Heise A
    Biomacromolecules; 2008 Dec; 9(12):3404-10. PubMed ID: 18975906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-step immunization using a controlled release, biodegradable polymer with sustained adjuvant activity.
    Kohn J; Niemi SM; Albert EC; Murphy JC; Langer R; Fox JG
    J Immunol Methods; 1986 Dec; 95(1):31-8. PubMed ID: 3782824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.
    Safranski DL; Weiss D; Clark JB; Taylor WR; Gall K
    Acta Biomater; 2014 Aug; 10(8):3475-83. PubMed ID: 24769113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly[(amino acid ester)phosphazenes] as substrates for the controlled release of small molecules.
    Allcock HR; Pucher SR; Scopelianos AG
    Biomaterials; 1994 Jun; 15(8):563-9. PubMed ID: 7948574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.