These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2090305)

  • 1. Chemically-modified polysaccharides for enzymatically-controlled oral drug delivery.
    Kost J; Shefer S
    Biomaterials; 1990 Nov; 11(9):695-8. PubMed ID: 2090305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable cross-linked starch/protein microcapsules containing proteinase inhibitor for oral protein administration.
    Larionova NV; Ponchel G; Duchêne D; Larionova NI
    Int J Pharm; 1999 Nov; 189(2):171-8. PubMed ID: 10536245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linked amylose tablets containing alpha-amylase: an enzymatically-controlled drug release system.
    Dumoulin Y; Cartilier LH; Mateescu MA
    J Control Release; 1999 Aug; 60(2-3):161-7. PubMed ID: 10425322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linked starch microspheres: effect of cross-linking condition on the microsphere characteristics.
    Atyabi F; Manoochehri S; Moghadam SH; Dinarvand R
    Arch Pharm Res; 2006 Dec; 29(12):1179-86. PubMed ID: 17225470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic erosion of bioartificial membranes to control drug delivery.
    Coluccio ML; Ciardelli G; Bertoni F; Silvestri D; Cristallini C; Giusti P; Barbani N
    Macromol Biosci; 2006 Jun; 6(6):403-11. PubMed ID: 16775815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-amylose carboxymethyl starch matrices for oral sustained drug-release: in vitro and in vivo evaluation.
    Nabais T; Brouillet F; Kyriacos S; Mroueh M; Amores da Silva P; Bataille B; Chebli C; Cartilier L
    Eur J Pharm Biopharm; 2007 Mar; 65(3):371-8. PubMed ID: 17275270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug release from starch-acetate microparticles and films with and without incorporated alpha-amylase.
    Tuovinen L; Peltonen S; Liikola M; Hotakainen M; Lahtela-Kakkonen M; Poso A; Järvinen K
    Biomaterials; 2004 Aug; 25(18):4355-62. PubMed ID: 15046926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microparticle prepared by chitosan coating on the extruded mixture of corn starch, resveratrol, and α-amylase controlled the resveratrol release.
    Song J; Zong J; Ma C; Chen S; Li H; Zhang D
    Int J Biol Macromol; 2021 Aug; 185():773-781. PubMed ID: 34186124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.
    Chaudhary V; Panyoyai N; Small DM; Shanks RA; Kasapis S
    Carbohydr Polym; 2017 Feb; 157():1531-1537. PubMed ID: 27987865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process.
    Farhat W; Venditti R; Mignard N; Taha M; Becquart F; Ayoub A
    Int J Biol Macromol; 2017 Nov; 104(Pt A):564-575. PubMed ID: 28602991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate.
    Azevedo HS; Reis RL
    Acta Biomater; 2009 Oct; 5(8):3021-30. PubMed ID: 19427418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR imaging of chitosan and carboxymethyl starch tablets: swelling and hydration of the polyelectrolyte complex.
    Wang YJ; Assaad E; Ispas-Szabo P; Mateescu MA; Zhu XX
    Int J Pharm; 2011 Oct; 419(1-2):215-21. PubMed ID: 21864660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in morphology of starch-based prothestic thermoplastic material during enzymatic degradation.
    Araújo MA; Cunha AM; Mota M
    J Biomater Sci Polym Ed; 2004; 15(10):1263-80. PubMed ID: 15559849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gellan in sustained release formulations: preparation of gel capsules and release studies.
    Alhaique F; Santucci E; Carafa M; Coviello T; Murtas E; Riccieri FM
    Biomaterials; 1996 Oct; 17(20):1981-6. PubMed ID: 8894092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of controlled release of heparin from swellable crosslinked starch microspheres.
    Bajpai AK; Bhanu S
    J Mater Sci Mater Med; 2007 Aug; 18(8):1613-21. PubMed ID: 17483909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionotropically cross-linked pH-sensitive IPN hydrogel matrices as potential carriers for intestine-specific oral delivery of protein drugs.
    El-Sherbiny IM; Salama A; Sarhan AA
    Drug Dev Ind Pharm; 2011 Feb; 37(2):121-30. PubMed ID: 20615156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients.
    Meng Y; Qiu C; Li X; McClements DJ; Sang S; Jiao A; Jin Z
    Crit Rev Food Sci Nutr; 2024; 64(1):187-201. PubMed ID: 35930011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources.
    Kittisuban P; Lee BH; Suphantharika M; Hamaker BR
    Carbohydr Polym; 2014 Jul; 107():182-91. PubMed ID: 24702934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linked high amylose starch derivatives for drug release III. Diffusion properties.
    Mulhbacher J; Mateescu MA
    Int J Pharm; 2005 Jun; 297(1-2):22-9. PubMed ID: 15878244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles.
    Satyanarayana T; Noorwez SM; Kumar S; Rao JL; Ezhilvannan M; Kaur P
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):276-8. PubMed ID: 15046588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.